Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633810 | PMC |
http://dx.doi.org/10.1096/fj.12-225599 | DOI Listing |
Pigment Cell Melanoma Res
January 2025
QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany.
Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.
View Article and Find Full Text PDFPhotodermatol Photoimmunol Photomed
January 2025
Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.
Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.
Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.
Int J Public Health
January 2025
Department of Child Healthcare, Hainan Women and Children's Medical Center (Children's Hospital Affiliated to Hainan Medical University), Haikou, China.
Objective: To investigate the prevalence of vitamin D deficiency (VDD) in children/adolescents in extreme southern China.
Methods: This multicenter, cross-sectional study included 21,811 children aged 0-18 years from 18 districts in Hainan Province, using a multistage stratified random sampling method from January 2021 to March 2022.
Results: Serum 25(OH)D levels decreased with age (p trend <0.
Genome Biol Evol
January 2025
Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.
Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!