The Bloch-Siegert (B-S) B1 (+) mapping technique is a fast, phase-based method that is highly SAR limited especially at 7T, necessitating the use of long repetition times. Spiral and echo-planar readouts were incorporated in a gradient-echo based B-S sequence to reduce specific absoprtion rate (SAR) and improve its scan efficiency. A novel, numerically optimized 4 ms B-S off-resonant pulse at + 1960 Hz was used to increase sensitivity and further reduce SAR compared with the conventional 6 ms Fermi B-S pulse. Using echo-planar and spiral readouts, scan time reductions of 8-16 were achieved. By reducing the B-S pulse width by a factor of 1.5, SAR was reduced by a factor of 1.5 and overall sensitivity was increased by a factor of 1.33 due to the nearly halved resonance offset of the new B-S pulse. This was validated on phantoms and volunteers at 7 T.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657582PMC
http://dx.doi.org/10.1002/mrm.24599DOI Listing

Publication Analysis

Top Keywords

b-s pulse
12
spiral echo-planar
8
echo-planar readouts
8
b-s
6
efficient bloch-siegert
4
bloch-siegert mapping
4
mapping spiral
4
readouts bloch-siegert
4
bloch-siegert b-s
4
b-s mapping
4

Similar Publications

7 days of L-citrulline supplementation does not improve running performance in the heat whilst in a hypohydrated state.

Eur J Appl Physiol

December 2024

National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.

Purpose: 7 days L-citrulline supplementation has been reported to improve blood pressure, O kinetics, gastrointestinal (GI) perfusion and endurance cycling performance through increasing arterial blood flow. In situations where blood volume is compromised (e.g.

View Article and Find Full Text PDF

New multilocus sequence typing scheme for reveals sequential outbreaks of vancomycin-resistant ST1162 and ST610 in a Japanese tertiary medical center.

Microbiol Spectr

January 2025

Department of Clinical Laboratory and Biomedical Sciences, Laboratory of Medical Microbiology and Microbiome, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.

Article Synopsis
  • Vancomycin-resistant Enterococcus faecium (VREfm) is a significant hospital pathogen, and effective control relies on advanced molecular epidemiological tools.
  • Pulsed-field gel electrophoresis (PFGE) is still widely used in clinical labs, but with the decline in PFGE equipment availability, the Bezdíček multilocus sequence typing (MLST) scheme has been proposed as a more accurate alternative for analyzing genetic similarities among VREfm strains.
  • Comparing both MLST schemes with PFGE, the study found that the Bezdíček scheme offers improved outbreak visualization and higher discriminatory power, making it a valuable tool for managing VREfm infections in healthcare settings.
View Article and Find Full Text PDF
Article Synopsis
  • - We developed a new 2 µm nanosecond solid-state laser using a unique heterojunction saturable absorber, achieving stable pulses at a low pump power of 12.69 W.
  • - The laser emits pulses with a width of 818 ns and a maximum energy of 15.48 µJ, showing better performance compared to previous technologies.
  • - This innovative laser technology has potential applications in fields like atmospheric monitoring and lidar, offering significant advancements in mid-infrared pulsed laser systems.
View Article and Find Full Text PDF

Background/objectives: Secondary mitral regurgitation (MR) is a common valvular heart disease burdening the prognosis of patients with co-existing chronic heart failure. Transcatheter edge-to-edge mitral valve repair (MV-TEER) is a minimally invasive treatment option for high-risk patients. However, the effects of MV-TEER on expanded hemodynamics, tissue perfusion, and quality of life, particularly in patients with advanced renal failure, remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!