A dilated cardiomyopathy (DCM) is associated with Duchenne muscular dystrophy (DMD). The loss of dystrophin leads to membrane instability and calcium dysregulation in skeletal muscle but effects of such a loss are not elucidated at cardiomyocytes level. We sought to examine whether membrane and transverse tubules damages occur in ventricular myocytes from mdx mouse model of DMD and how they impact the function of single excitation-contraction coupling elements. Scanning ion conductance microscopy (SICM) was used to characterize the integrity loss of living mdx cardiomyocytes surface. 2D Fourier transform analysis of labeled internal networks (transverse tubules, alpha-actinin, dihydropyridine receptors, ryanodine receptors) was performed to evaluate internal alterations. During calcium measurements, "smart microperfusions" of depolarizing solutions were applied through SICM nanopipette, stimulating single tubules elements. These approaches revealed structural membrane surface (39% decrease for Z-groove ratio) and transverse tubules disorganization (21% transverse tubules ratio decrease) in mdx as compared to control. These disruptions were associated with functional alterations (sixfold increase of calcium signal duration and twofold increase of sparks frequency). In DCM associated with DMD, myocytes display evident membrane alterations at the surface level but also in the cell depth with a disruption of transverse tubules network as observed in other cases of heart failure. These ultrastructural changes are associated with changes in the function of some coupling elements. Thus, these profound disruptions may play a role in calcium dysregulation through excitation-contraction coupling elements perturbation and suggest a transverse tubules stabilizing role for dystrophin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-013-9517-8 | DOI Listing |
Vaccines (Basel)
December 2024
Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Faculty of Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Adhesion within endodontic obturation material and root canal walls improves the efficacy of the endodontic treatment by establishing a barrier that inhibits reinfection and entombs residual bacteria. This study evaluates the push-out bond strength (POBS) of calcium silicate sealers compared to an epoxy-resin-based sealer. A total of 36 extracted mono-radicular teeth were prepared with Pro Taper Ultimate and irrigated with 5.
View Article and Find Full Text PDFFront Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFCells
December 2024
Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany.
There is no doubt that the proper development of the heart is important for its correct function, in addition, maturation processes of the heart are crucial as well. The actin-binding protein nexilin seems to take over central roles in the latter processes, as nexilin-deficient mice are phenotypically inconspicuous at birth but die within short time thereafter. Recently, it has been proposed that nexilin plays a role in the formation and function of transverse tubules (T-tubules), which are essential for excitation-contraction coupling in the hearts of mature animals.
View Article and Find Full Text PDFNPJ Regen Med
December 2024
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
Heart failure (HF) is a major cause of mortality and morbidity worldwide, yet with limited therapeutic options. Cardiac bridging integrator 1 (cBIN1), a cardiomyocyte transverse-tubule (t-tubule) scaffolding protein which organizes the calcium handling machinery, is transcriptionally reduced in HF and can be recovered for functional rescue in mice. Here we report that in human patients with HF with reduced ejection fraction (HFrEF), left ventricular cBIN1 levels linearly correlate with organ-level ventricular remodeling such as diastolic diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!