Voltage-gated Ca(2+) channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca(2+) entry, placing the Ca(2+) channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the strength of neurotransmission through facilitation and depression on the millisecond time scale and plays a key role in encoding information in the nervous system. Ca(V)2.1 channels are the major source of Ca(2+) entry for neurotransmission in the central nervous system. They are tightly regulated by Ca(2+), calmodulin, and related Ca(2+) sensor proteins, which cause facilitation and inactivation of channel activity. Emerging evidence reviewed here points to this mode of regulation of Ca(V)2.1 channels as a major contributor to short-term synaptic plasticity of neurotransmission and its diversity among synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624454 | PMC |
http://dx.doi.org/10.1074/jbc.R112.411645 | DOI Listing |
Brain Behav
January 2025
Department of Molecular Biology, Faculty of Engineering and Natural Sciences, Üsküdar University, İstanbul, Turkey.
Background: The underlying mechanism of quetiapine (QET) in treating cognitive impairment in sleep deprivation is unclear. The present study aimed to evaluate the effects of treatment with QET on novel object recognition and hippocampal (hippo) brain-derived neurotrophic factor (BDNF) levels in rats submitted to 72 h sleep deprivation (SD).
Materials And Methods: A total of 42 adult male Wistar albino rats were assigned into six experimental groups: non-sleep-deprived (NSD) control, short-term control group (n = 7) received a single intraperitoneal (i.
Behav Brain Res
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Tlaxcala, Mexico. Electronic address:
Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.
Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.
Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!