Patients with von Hippel-Lindau disease carry a germline mutation of the Von Hippel-Lindau (VHL) tumor-suppressor gene. We discuss the molecular consequences of loss of VHL gene function and their impact on the nervous system. Dysfunction of the VHL protein causes accumulation and activation of hypoxia inducible factor (HIF) which can be demonstrated in earliest stages of tumorigenesis and is followed by expression of VEGF, erythropoietin, nitric oxide synthase and glucose transporter 1 in VHL-deficient tumor cells. HIF-independent functions of VHL, epigenetic inactivation of VHL, pVHL proteostasis, and links between loss of VHL function and developmental arrest are also described. A most intriguing feature in VHL disease is the occurrence of primary hemangioblastic tumors in the nervous system, the origin of which has not yet been entirely clarified, and current hypotheses are discussed. Endolymphatic sac tumors may extend into the brain, but originally arise from proliferation of endolymphatic duct/sac epithelium; the exact nature of the proliferating epithelial cell, however, also has remained unclear, as well as the question why tumors almost consistently develop in the intraosseous portion of the endolymphatic sac/duct only. The epitheloid clear cell morphology of both advanced hemangioblastoma and renal clear cell carcinoma can make the differential diagnosis challenging, recent developments in immunohistochemical differentiation are discussed. Finally, metastasis to brain may not only be caused by renal carcinoma, but may derive from VHL disease-associated pheochromocytoma/paraganglioma, or pancreatic neuroendocrine tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-013-1091-z | DOI Listing |
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFPituitary
January 2025
Department of Endocrinology and Metabolism, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye.
Sheehan syndrome (SS) is postpartum pituitary necrosis leading to severe hypopituitarism. Severe bleeding during delivery and postpartum period results in ischemic necrosis of the enlarged pituitary gland during pregnancy. The improved obstetrical care decreased the incidence of SS significantly, however SS should always be kept in mind in the etiologies of hypopitutarism in women which can be easily recognized by medical history of the patient.
View Article and Find Full Text PDFSci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!