Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To predict the energetic effectiveness of a tubular light guide accurately, a theoretically founded approach has to be used rather than any empirical approximation. The computed illuminance below a light guide can become inaccurate if neither Fresnel's equations nor realistic optical path lengths in a cupola are taken into consideration. It is shown that incorporation of both of them into a theoretical model results in lowered luminous flux below the light guide. Assumption of directionally independent transmission coefficient leads to average errors in luminous fluxes of about 10%. The peak errors are typically higher and correspond to lightbeams crossing a hemispherical top dome near its circular base. The solution concept used in this paper can improve predictions of energetic effectiveness for tubular light guides under diffuse daylight conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.001100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!