The echelle spectrometer TIMM-2 is the instrument developed for the unsuccessful Russian mission Phobos-Grunt. The instrument was dedicated to solar occultation studies of the Martian atmosphere by measuring the amount of methane, by sensitive measuring of other minor constituents, and by profiling the D/H ratio and the aerosol structure. The spectral range of the instrument is 2300-4100 nm, the spectral resolving power λ/Δλ exceeds 25,000, and the field of view is 1.5×21 arc min. The spectra are measured in narrow spectral intervals, corresponding to discreet diffraction orders. One measurement cycle includes several spectral intervals. To study the vertical profiles of aerosol, the instrument incorporates four photometers in the UV to near-IR spectral range. The mass of the instrument is 2800 g, and its power consumption is 12 W. One complete flight model remains available after the Phobos-Grunt launch. We discuss the science objectives of the occultation experiment for the case of Mars, the implementation of the instrument, and the results of ground calibrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.001054 | DOI Listing |
We propose a spatial heterodyne Raman spectrometer (SHRS) based on a field-widened grating-echelle (FWGE). A normal grating is combined with an echelle grating in a conventional spatial heterodyne spectrometer to eliminate ghost images without using masks, and prevents interference among the spatial frequencies of different diffraction orders. Mathematical expressions and derivation processes are given for the spectral parameters in the FWGE-SHRS and a verification breadboard system is fabricated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2024
Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA.
Nanoelectromechanical systems (NEMS)-based mass spectrometry (MS) is an emerging technique that enables determination of the mass of individual adsorbed particles by driving nanomechanical devices at resonance and monitoring the real-time changes in their resonance frequencies induced by each single molecule adsorption event. We incorporate NEMS into an Orbitrap mass spectrometer and report our progress towards leveraging the single-molecule capabilities of the NEMS to enhance the dynamic range of conventional MS instrumentation and to offer new capabilities for performing deep proteomic analysis of clinically relevant samples. We use the hybrid instrument to deliver E.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2024
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China.
Microplastic pollution has become a global environmental problem that cannot be ignored. Raman spectroscopy has been widely used for microplastics detection because it can be performed in real-time and is non-destructive. Conventional detection techniques have had weak signals and low signal-to-noise ratios (SNR).
View Article and Find Full Text PDFWe present the concept and design of a novel integrated optical spectrometer able to operate over four different optical bands in the infrared that cover over 900 nm of aggregated bandwidth. The device, named integrated optical four bands spectrometer (IOFBS), consists of a single planar concave grating with 4 inputs waveguides, each corresponding to a different wavelength band, and 39 output channels that can be implemented on a silicon nitride platform. The inputs waveguides (IWGs) are optimized so that the echelle grating works in different diffraction orders to create constructive interference at the fixed output waveguides.
View Article and Find Full Text PDFSensors (Basel)
July 2023
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 17 Xinxi Road, Xi'an 710119, China.
We have developed a compact, asymmetric three-channel echelle spectrometer with remarkable high-spectral resolution capabilities. In order to achieve the desired spectral resolution, we initially establish a theoretical spectral model based on the two-dimensional coordinates of spot positions corresponding to each wavelength. Next, we present an innovative and refined method for precisely calibrating echelle spectrometers through parameter inversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!