Electron attachment to the dipeptide dialanine: influence of methylation on site selective dissociation reactions.

Phys Chem Chem Phys

Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.

Published: March 2013

Gas phase dissociative electron attachment (DEA) measurements with methyl-dialanine, C(7)H(14)N(2)O(3), are performed in a crossed electron-molecular beam experiment at high energy resolution (∼120 meV). Anion efficiency yields as a function of the incident electron energy are obtained for the most abundant fragments up to electron energies of ∼15 eV. There is no evidence of molecular anion formation whereas the dehydrogenated closed shell anion (M-H)(-) is one of the most dominant reaction products. Quantum chemical calculations are performed to investigate the electron attachment process and to elucidate site selective bond cleavage in the (M-H)(-) DEA-channel. Previous DEA studies on dialanine have shown that (M-H)(-) formation proceeds through abstraction of a hydrogen atom from the carboxyl and amide groups, contributing to two distinct resonances at 0.81 and 1.17 eV, respectively [D. Gschliesser, V. Vizcaino, M. Probst, P. Scheier and S. Denifl, Chem.-Eur. J., 2012, 18, 4613-4619]. Here we show that by methylation of the carboxyl group, all (calculated) thresholds for H-loss from the different sites in the dialanine molecule are shifted up to a maximum of 1.4 eV. The lowest lying resonance observed experimentally for (M-H)(-) remains operative from the amide group at the electron energy of 2.4 eV due to the methylation. We further study methylation-induced effects on the unimolecular dissociation leading to a variety of negatively charged DEA products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp44230fDOI Listing

Publication Analysis

Top Keywords

electron attachment
12
site selective
8
electron energy
8
electron
6
attachment dipeptide
4
dipeptide dialanine
4
dialanine influence
4
influence methylation
4
methylation site
4
selective dissociation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!