Huperzine A, but not tacrine, stimulates S100B secretion in astrocyte cultures.

Life Sci

Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, Brazil.

Published: April 2013

Aims: The loss of cholinergic function in the central nervous system contributes significantly to the cognitive decline associated with advanced age and dementias. Huperzine A (HupA) is a selective inhibitor of acetylcholinesterase (AChE) and has been shown to significantly reduce cognitive impairment in animal models of dementia. Based on the importance of astrocytes in physiological and pathological brain activities, we investigated the effect of HupA and tacrine on S100B secretion in primary astrocyte cultures. S100B is an astrocyte-derived protein that has been proposed to be a marker of brain injury.

Main Methods: Primary astrocyte cultures were exposed to HupA, tacrine, cholinergic agonists, and S100B secretion was measured by enzyme-linked immunosorbent assay (ELISA) at 1 and 24h.

Key Findings: HupA, but not tacrine, at 100μM significantly increased S100B secretion in astrocyte cultures. Nicotine (at 100 and 1000μM) was able to stimulate S100B secretion in astrocyte cultures.

Significance: Our data reinforce the idea that AChE inhibitors, particularly HupA, do not act exclusively on the acetylcholine balance. This effect of HupA could contribute to improve the cognitive deficit observed in patients, which are attributed to cholinergic dysfunction. In addition, for the first time, to our knowledge, these data indicate that S100B secretion can be modulated by nicotinic receptors, in addition to glutamate, dopamine and serotonin receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2013.01.029DOI Listing

Publication Analysis

Top Keywords

s100b secretion
24
astrocyte cultures
16
secretion astrocyte
12
hupa tacrine
12
primary astrocyte
8
s100b
7
secretion
6
hupa
6
astrocyte
5
huperzine tacrine
4

Similar Publications

High-concentration oxygen inhalation is the primary intervention to prevent perioperative hypoxemia. However, there are concerns that this may induce an imbalance in oxidation‒reduction processes, particularly in pediatric patients with compromised antioxidant defenses. This study aimed to evaluate the impact of varying intraoperative concentrations of oxygen inhalation on oxidative stress in children by analyzing plasma biomarkers, oxygenation indices, and the duration of surgery and oxygen inhalation.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a leading cause of mortality and morbidity, particularly in forensic settings where determining the cause of death and timing of injury is critical. Glial fibrillary acidic protein (GFAP), a biomarker specific to astrocytes, has emerged as a valuable tool in post-mortem analyses of TBI. A PRISMA-based literature search included studies examining GFAP in human post-mortem samples such as brain tissue, cerebrospinal fluid (CSF), serum, and urine.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Vitiligo is a depigmenting disorder characterized by melanocyte loss, which results in pigment dilution of the skin. Vitiligo is commonly associated with thyroid disorders and thyroid stimulating hormone (TSH) is a sensitive marker to detect thyroid disorders. S100B is damage associated molecular pattern (DAMP) molecule released when there is melanocyte damage.

View Article and Find Full Text PDF

Early alterations of functional connectivity, regional brain volumes and astrocyte markers in the beta-sitosterol beta-d-glucoside (BSSG) rat model of parkinsonism.

Exp Neurol

December 2024

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Basic and Clinical Neuroscience, King's College London, London, UK. Electronic address:

The β-sitosterol-β-ᴅ-glucoside (BSSG) rat model of experimental parkinsonism develops pathological behaviour and motor changes that progress over time. The purpose of this study was to identify early changes in structure and function of the brain of rats treated with BSSG using both structural and resting-state functional MRI. BSSG and non-BSSG rats were fed five days a week for sixteen weeks, then underwent in vivo MRI scans and an assessment of motor performance 2 and 8 weeks later (18 and week 24 from BSSG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!