Nanogold-enhanced graphene nanosheets as multienzyme assembly for sensitive detection of low-abundance proteins.

Biosens Bioelectron

Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China.

Published: June 2013

A new electrochemical immunosensing protocol was designed for detection of carcinoembryonic antigen (CEA, as a model protein) by using graphene-carried poly(o-phenylenediamine)/gold hybrid nanosheets (GNPGs) as signal tags on the hierarchical dendritic gold microstructures (HDGMs)-modified glassy carbon electrode. To prepare the signal tags, poly(o-phenylenediamine) molecules were initially immobilized on the surface of graphene nanosheets via the π-stacking interaction. Then gold nanoparticles were assembled onto the poly(o-phenylenediamine)-modified graphene nanosheets, which were used for the labeling of anti-CEA detection antibodies and horseradish peroxidase (HRP). The as-prepared GNPGs were characterized by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. The assay was carried out with a sandwich-type immunoassay format in pH 5.5 acetic acid-buffered saline solutions containing 2.5 mmol L(-1) H2O2. Under optimal conditions, the electrochemical immunoassay exhibited a wide dynamic range of 0.005-80 ng mL(-1) toward CEA standards with a low detection limit of 5.0 pg mL(-1). Intra- and inter-assay coefficients of variation were less than 11.5%. No significant difference at the 0.05 significance level was encountered in the analysis of 6 clinical serum specimens and 6 spiked blank new born cattle serum specimens between the developed immunoassay and commercially available electrochemiluminescent (ECL) method for the detection of CEA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.12.054DOI Listing

Publication Analysis

Top Keywords

graphene nanosheets
12
signal tags
8
serum specimens
8
detection
5
nanogold-enhanced graphene
4
nanosheets
4
nanosheets multienzyme
4
multienzyme assembly
4
assembly sensitive
4
sensitive detection
4

Similar Publications

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules.

J Hazard Mater

January 2025

Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:

The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.

View Article and Find Full Text PDF

High-Strength and Rapidly Degradable Nanocomposite Yarns from Recycled Waste Poly(glycolic acid) (PGA).

Polymers (Basel)

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!