Determination of thoracic and lumbar spinal processes by their percentage position between C7 and the PSIS level.

BMC Res Notes

Zurich University of Applied Sciences, Institute of Physiotherapy, Research & Development, Technikumstrasse 71, 8401 Winterthur, Switzerland.

Published: February 2013

Background: Accurate measurements of spinal movement require reliable determination of anatomical landmarks. Current methods of identifying these are not sufficiently reliable or valid for this purpose. A reliable and convenient method of placing markers on selected vertebra is needed to compare measurements between different testers, subjects and sessions.

Findings: Two testers palpated T4, T7, T10, L1 and L4 spinal processes according to established criteria. They measured the position of spinal processes between C7 and the Posterior Superior Iliac Spine (PSIS) at the Pelvis independently using a flexible ruler placed on the spine. Subjects with a wide range of body heights but without visible spinal deformities were recruited for measurements. Reliability was calculated using absolute and relative values. Mean percentage position and 95% Confidence Intervals were calculated using the mean of both testers' measurement for all subjects.Twenty-two subjects participated. The mean distance between C7 and the PSIS level was 50.9 cm (SD: 3.5 cm). Relative reliability for all spinal processes was almost perfect (ICC: > 0.9). Absolute reliability values showed high agreement between testers. Percentage position of T4 was found to be situated 21% along the distance between C7 and the PSIS level, T7 at 39%, T10 at 54.1%, L1 at 70.9% and L4 at 86.1% accordingly. 95% Confidence intervals around mean percentage positions had a maximum at L1 with 2.8% range from upper to lower limit.

Conclusions: The distance of three thoracic and two lumbar spinal processes can be reliably and accurately measured by independent testers, using a flexible ruler. Percentage positions between C7 and PSIS level correspond to spinal processes for subjects without visible deformities in the sagittal and frontal plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598670PMC
http://dx.doi.org/10.1186/1756-0500-6-58DOI Listing

Publication Analysis

Top Keywords

spinal processes
24
psis level
16
percentage position
12
thoracic lumbar
8
spinal
8
lumbar spinal
8
flexible ruler
8
95% confidence
8
confidence intervals
8
distance psis
8

Similar Publications

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.

View Article and Find Full Text PDF

IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury.

Biomolecules

December 2024

Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.

The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.

View Article and Find Full Text PDF

: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).

View Article and Find Full Text PDF

Background/objectives: Lumbar spinal stenosis (LSS) is a degenerative condition characterized by the narrowing of the spinal canal, resulting in chronic pain and impaired mobility. However, the molecular mechanisms underlying LSS remain unclear. In this study, we performed RNA sequencing (RNA-seq) to investigate differential gene expression in a rat LSS model and identify the key genes and pathways involved in its pathogenesis.

View Article and Find Full Text PDF

Purpose: Our aim was to update evidence-based and consensus-based recommendations for the initial surgical management of spinal (cord) injuries in patients with multiple and/or severe injuries based on current evidence. This guideline topic is part of the 2022 update of the German Guideline on the Treatment of Patients with Multiple and/or Severe Injuries.

Methods: MEDLINE and Embase were systematically searched to May 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!