Background: The title compound belongs to the class of bis-azomethine pigments. On the basis of comparative studies on similar structures, insight into the complex excited state dynamics of such compounds has been gained. It has been shown, for example, that only compounds that possess hydroxyl groups are fluorescent, and that the possibility for cis-trans isomerisation and/or bending motions of the central bis-azomethine fragment allows for different non-radiative decay pathways.

Results: The compound, 4,4'-dihydroxy-1,1'-naphthaldazine (1) was synthesized and characterized by means of spectroscopic and quantum chemical methods. The tautomerism of 1 was studied in details by steady state UV-Vis spectroscopy and time resolved flash photolysis. The composite shape of the absorption bands was computationally resolved into individual subbands. Thus, the molar fraction of each component and the corresponding tautomeric constants were estimated from the temperature dependent spectra in ethanol.

Conclusions: According to the spectroscopic data the prevalent tautomer is the diol form, which is in agreement with the theoretical (HF and DFT) predictions. The experimental data show, however, that all three tautomers coexist in solution even at room temperature. Relevant theoretical results were obtained after taking into account the solvent effect by the so-called supermolecule-PCM approach. The TD-DFT B3LYP/6-31 G** calculated excitation energies confirm the assignment of the individual bands obtained from the derivative spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599304PMC
http://dx.doi.org/10.1186/1752-153X-7-29DOI Listing

Publication Analysis

Top Keywords

tautomerism 44'-dihydroxy-11'-naphthaldazine
4
44'-dihydroxy-11'-naphthaldazine studied
4
studied experimental
4
experimental theoretical
4
theoretical methods
4
methods background
4
background title
4
title compound
4
compound belongs
4
belongs class
4

Similar Publications

New PKS/NRPS Tenuazamines A-H from the Endophytic Fungus FL7 Isolated from .

J Fungi (Basel)

November 2024

Jiangxi Province Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.

In this paper, we present a novel class of hybrid polyketides, tenuazamines A-H (-), which exhibit a unique tautomeric equilibrium from FL7. The elucidation of the structures was achieved through a diverse combination of NMR, HR-ESIMS, and ECD methods, with a focus on extensive spectroscopic data analysis. Notably, compounds , , - exhibited potent toxic effects on the growth of .

View Article and Find Full Text PDF

Pd(0)/Pd(II) Electromerism Triggered by Lewis Base Coordination to a Redox-Active Silicon Z-Type Ligand.

Angew Chem Int Ed Engl

December 2024

Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.

Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.

View Article and Find Full Text PDF

This study investigates the mechanism of prototropic tautomerization in metal-bound asymmetric pyrazole (R-PzH) ligands during Cu(II)-mediated PzH-MeCN coupling reactions. Intrinsic prototropic tautomerization of metal-bound ligands has not been previously documented. Various new bis-pyrazolylamidino Cu(II) complexes, [Cu(R-Pz(HNC(Me)))(ClO)], from the coupling reaction, and tetrakis pyrazole Cu(II) complexes, [Cu(R-PzH)(ClO)], with symmetric and asymmetric -monosubstituted R-PzH ligands were synthesized and characterized.

View Article and Find Full Text PDF

The bioorthogonal tetrazine-triggered cleavage of trans-cyclooctene(TCO)-linked payloads has strong potential for widespread use in drug delivery and in particular in click-cleavable antibody-drug conjugates (ADCs). However, clinical translation is hampered by an inverse correlation between click reactivity and payload release yield, requiring high doses of less reactive tetrazines to drive in vivo TCO reactions and payload release to completion. Herein we report that the cause for the low release when using the highly reactive bis-(2-pyridinyl)-tetrazine is the stability of the initially formed 4,5-dihydropyridazine product, precluding tautomerization to the releasing 1,4-dihydropyridazine tautomer.

View Article and Find Full Text PDF

Context: Schiff bases, which have intriguing properties in many areas, have been studied extensively in recent years due to their structural properties and biological activities. In this research, a novel water-soluble Schiff base complex, Catena-((μ-(E)-2-((4-methoxy-2-oxidobenzylidene) ammonio) ethane-1-sulfonato potassium, CHKNOS (CMOAESP), was synthesized by a one-step condensation reaction of 2-hydroxy-4-methoxy benzaldehyde and taurine with the yield of 65%, 0.333 g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!