Many studies have investigated phototoxicity under controlled laboratory conditions, however, few have actually demonstrated it occurring in environmental samples. Here we report on the potential for UK marine coastal waters to demonstrate phototoxicity when tested using the oyster embryo (Crassostrea gigas) bioassay in the presence UV light. Subsurface water, sea surface microlayer samples and subsurface water samples that had been extracted through solid phase extraction (SPE) columns were analysed. Results demonstrated that the majority of samples failed to display any phototoxic potential. However, those collected from Belfast Lough did display an increase in toxicity when bioassays were performed in the presence of UV light when compared to identical samples assayed in the absence of UV light. Analysis of water samples at this location identified known phototoxic PAHs, pyrene and fluoranthene. These findings suggest the need to consider the potential UV light has when determining the toxicity of environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2013.01.003 | DOI Listing |
Front Parasitol
March 2024
Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research -Water Research Institute, Accra, Ghana.
Neglected tropical diseases (NTDs) affect over a billion people worldwide. The 2021-2030 NTD road map calls for innovative and highly efficient interventions to eliminate or significantly reduce the burden of NTDs. These include sensitive and cost-effective diagnostic techniques for disease surveillance.
View Article and Find Full Text PDFACS ES T Water
January 2025
University of Iowa Libraries, The University of Iowa, Iowa City, Iowa 52242, United States.
Data on dissolved phase water concentrations of polychlorinated biphenyls (PCBs) from 32 locations across the U.S. were compiled from reports, Web sites, and peer-reviewed papers, spanning 1979-2020, resulting in 5132 individual samples.
View Article and Find Full Text PDFACS ES T Water
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.
View Article and Find Full Text PDFLandsc Ecol
January 2025
Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
Context: Historical land use is thought to have influenced plant community diversity, composition and function through the local persistence of taxa that reflect ecological conditions of the past.
Objectives: We tested for the effects of historical land use on contemporary plant species richness, composition, and ecological preferences in the grassland vegetation of Central Europe.
Methods: We analyzed 6975 vegetation plots sampled between 1946 and 2021 in dry, mesic, and wet grasslands in the borderland between Austria, the Czech Republic, and Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!