Connexin 43 is located in the cardiomyocyte sarcolemma and in the mitochondrial membrane. Sarcolemmal connexin 43 contributes to the spread of myocardial ischemia/reperfusion injury, whereas mitochondrial connexin 43 contributes to cardioprotection. We have now investigated the antiarrhythmic dipeptide ZP1609 (danegaptide), which is an analog of the connexin 43 targeting antiarrhythmic peptide rotigaptide (ZP123), in an established and clinically relevant experimental model of ischemia/reperfusion in pigs. Pigs were subjected to 60 min coronary occlusion and 3 h reperfusion. ZP1609 (n = 10) was given 10 min prior to reperfusion (75 μg/kg b.w. bolus i.v. + 57 μg/kg/min i.v. infusion for 3 h). Immediate full reperfusion (IFR, n = 9) served as control. Ischemic postconditioning (PoCo, n = 9; 1 min LAD reocclusion after 1 min reperfusion; four repetitions) was used as a positive control of cardioprotection. Infarct size (TTC) was determined as the end point of cardioprotection. Systemic hemodynamics and regional myocardial blood flow during ischemia were not different between groups. PoCo and ZP1609 reduced infarct size vs. IFR (IFR, 46 ± 4 % of area at risk; mean ± SEM; PoCo, 31 ± 4 %; ZP1609, 25 ± 5 %; both p < 0.05 vs. IFR; ANOVA). There were only few arrhythmias during reperfusion such that no antiarrhythmic action of ZP1609 was observed. ZP1609 when given before reperfusion reduces infarct size to a similar extent as ischemic postconditioning. Further studies are necessary to define the mechanism/action of ZP1609 on connexin 43 in cardiomyocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-013-0840-9DOI Listing

Publication Analysis

Top Keywords

infarct size
12
antiarrhythmic dipeptide
8
dipeptide zp1609
8
zp1609 danegaptide
8
connexin contributes
8
zp1609
5
reperfusion
5
danegaptide reperfusion
4
reperfusion reduces
4
reduces myocardial
4

Similar Publications

Surface-enhanced Raman spectroscopy for the characterization of filtrate portions of blood serum samples of myocardial infarction patients using 30 kDa centrifugal filter devices.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Institut - Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, Montréal, Quebec H3C 3J7, Canada.

Myocardial infarction (MI) is the leading cause of death and disability worldwide. It occurs when a thrombus forms after an atherosclerotic plaque bursts, obstructing blood flow to the heart. Prompt and accurate diagnosis is crucial for improving patient survival.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.

Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.

View Article and Find Full Text PDF

This case report discusses a unique presentation of an artery of Percheron (AOP) infarct resulting in rapidly resolving internuclear ophthalmoplegia (INO) without classical signs. This is the case of a 70-year-old male patient who presented to a community Emergency Department following acute code stroke activation. Physical exam and imaging studies including non-contrast CT, CT angiography, CT perfusion, and MRI were performed.

View Article and Find Full Text PDF

Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model.

Int J Biol Macromol

December 2024

Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!