Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K(+) uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K(+) channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using (86)radioactive rubidium ion ((86)Rb(+)) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608781PMC
http://dx.doi.org/10.1105/tpc.112.105700DOI Listing

Publication Analysis

Top Keywords

stress responses
12
kup68 gork
12
osmotic adjustment
8
acid aba
8
potassium efflux
8
kup268 kup68
8
drought stress
8
aba signaling
8
potassium
6
growth
5

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!