Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623184 | PMC |
http://dx.doi.org/10.1128/AEM.03608-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!