Sulfadiazine (SDZ)-degrading bacterial cultures were enriched from the topsoil layer of lysimeters that were formerly treated with manure from pigs medicated with (14)C-labeled SDZ. The loss of about 35% of the applied radioactivity after an incubation period of 3 years was attributed to CO2 release due to mineralization processes in the lysimeters. Microcosm experiments with moist soil and soil slurries originating from these lysimeters confirmed the presumed mineralization potential, and an SDZ-degrading bacterium was isolated. It was identified as Microbacterium lacus, denoted strain SDZm4. During degradation studies with M. lacus strain SDZm4 using pyrimidine-ring labeled SDZ, SDZ disappeared completely but no (14)CO2 was released during 10 days of incubation. The entire applied radioactivity (AR) remained in solution and could be assigned to 2-aminopyrimidine. In contrast, for parallel incubations but with phenyl ring-labeled SDZ, 56% of the AR was released as (14)CO2, 16% was linked to biomass, and 21% remained as dissolved, not yet identified (14)C. Thus, it was shown that M. lacus extensively mineralized and partly assimilated the phenyl moiety of the SDZ molecule while forming equimolar amounts of 2-aminopyrimidine. This partial degradation might be an important step in the complete mineralization of SDZ by soil microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623193 | PMC |
http://dx.doi.org/10.1128/AEM.03636-12 | DOI Listing |
Biodegradation
April 2015
Forschungszentrum Jülich, Institute of Bio- and Geosciences, Institute 3: Agrosphere, 52425, Jülich, Germany,
Recently we showed that during the degradation of sulfadiazine (SDZ) by Microbacterium lacus strain SDZm4 the principal metabolite 2-aminopyrimidine (2-AP) accumulated to the same molar amount in the culture as SDZ disappeared (Tappe et al. Appl Environ Microbiol 79:2572-2577, 2013). Although 2-AP is considered a recalcitrant agent, long-term lysimeter experiments with (14)C-pyrimidine labeled SDZ ([(14)C]pyrSDZ) provided indications for substantial degradation of the pyrimidine moiety of the SDZ molecule.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2013
Forschungszentrum Jülich, Institute of Bio- and Geosciences, Institute 3: Agrosphere, Jülich, Germany.
Sulfadiazine (SDZ)-degrading bacterial cultures were enriched from the topsoil layer of lysimeters that were formerly treated with manure from pigs medicated with (14)C-labeled SDZ. The loss of about 35% of the applied radioactivity after an incubation period of 3 years was attributed to CO2 release due to mineralization processes in the lysimeters. Microcosm experiments with moist soil and soil slurries originating from these lysimeters confirmed the presumed mineralization potential, and an SDZ-degrading bacterium was isolated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!