A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glial cell activation in the spinal cord and dorsal root ganglia induced by surgery in mice. | LitMetric

Glial cell activation in the spinal cord and dorsal root ganglia induced by surgery in mice.

Eur J Pharmacol

Department of Anesthesiology, Pain Research Unit, Institut Municipal d'Investigació Mèdica, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.

Published: February 2013

In rodents, surgery and/or remifentanil induce postoperative pain hypersensitivity together with glial cell activation. The same stimulus also produces long-lasting adaptative changes resulting in latent pain sensitization, substantiated after naloxone administration. Glial contribution to postoperative latent sensitization is unknown. In the incisional pain model in mice, surgery was performed under sevoflurane+remifentanil anesthesia and 21 days later, 1 mg/kg of (-) or (+) naloxone was administered subcutaneously. Mechanical thresholds (Von Frey) and glial activation were repeatedly assessed from 30 min to 21 days. We used ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) to identify glial cells in the spinal cord and dorsal root ganglia by immunohistochemistry. Postoperative hypersensitivity was present up to 10 days, but the administration of (-) but not (+) naloxone at 21 days, induced again hyperalgesia. A transient microglia/macrophage and astrocyte activation was present between 30 min and 2 days postoperatively, while increased immunoreactivity in satellite glial cells lasted 21 days. At this time point, (-) naloxone, but not (+) naloxone, increased GFAP in satellite glial cells; conversely, both naloxone steroisomers similarly increased GFAP in the spinal cord. The report shows for the first time that surgery induces long-lasting morphological changes in astrocytes and satellite cells, involving opioid and toll-like receptors, that could contribute to the development of latent pain sensitization in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2013.01.047DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
glial cells
12
glial
8
glial cell
8
cell activation
8
cord dorsal
8
dorsal root
8
root ganglia
8
latent pain
8
pain sensitization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!