Next-generation sequencing is rapidly becoming the approach of choice for transcriptional analysis experiments. Substantial advances have been achieved in computational approaches to support these technologies. These approaches typically rely on existing transcript annotations, introducing a bias towards known genes, require specific experimental design and computational resources, or focus only on identification of splice variants (ignoring other biologically relevant transcribed features contained within the data that may be important for downstream analysis). Biologically relevant transcribed features also include large and small non-coding RNA, new transcription start sites, alternative promoters, RNA editing and processing of coding transcripts. Also, many existing solutions lack accessible interfaces required for wide scale adoption. We present a user-friendly, rapid and computation-efficient feature annotation framework (RNA-eXpress) that enables identification of transcripts and other genomic and transcriptional features independently of current annotations. RNA-eXpress accepts mapped reads in the standard binary alignment (BAM) format and produces a study-specific feature annotation in GTF format, comparison statistics, sequence extraction and feature counts. The framework is designed to be easily accessible while allowing advanced users to integrate new feature-identification algorithms through simple class extension, thus facilitating expansion to novel feature types or identification of study-specific feature types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597146 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btt034 | DOI Listing |
Front Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development.
View Article and Find Full Text PDFHemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFMetabol Open
March 2025
Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece.
The autoimmune protocol diet (AIP) is a personalized elimination diet that aims to determine and exclude the foods that might trigger immune responses, leading to inflammation and symptomatology associated with autoimmune diseases. Focusing on gut health and the importance of the gut microbiome in immune regulation and overall well-being, the AIP starts by eliminating foods that might create negative effects on the patients and continues by developing a personalized and tailored diet plan for them. This comprehensive approach aims to mitigate symptoms and improve quality of life of individuals with autoimmune conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!