Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1550059412464463 | DOI Listing |
Hum Brain Mapp
January 2025
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA.
Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Neuroimage
December 2024
Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China. Electronic address:
Commun Biol
November 2024
Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning.
View Article and Find Full Text PDFNeurophysiol Clin
November 2024
Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia; Queensland Brain Institute, University of Queensland, Australia.
Surgical resection for epilepsy often fails due to incomplete Epileptogenic Zone Network (EZN) localization from scalp electroencephalography (EEG), stereo-EEG (SEEG), and Magnetic Resonance Imaging (MRI). Subjective interpretation based on interictal, or ictal recordings limits conventional EZN localization. This study employs multimodal analysis using high-density-EEG (HDEEG), Magnetoencephalography (MEG), functional-MRI (fMRI), and SEEG to overcome these limitations in a patient with drug-resistant MRI-negative focal epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!