Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice. To our surprise, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in nontransgenic animals, including humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604056 | PMC |
http://dx.doi.org/10.1038/nchembio.1183 | DOI Listing |
Eur J Orthod
December 2024
Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.
Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.
J Biochem Mol Toxicol
January 2025
Department of Veterinary Medicine, Osmaniye Korkut Ata University, Vocational School of Health Services, Osmaniye, Turkey.
The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Anatomy, Biophysics and Physiology, Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania.
The expression of the transient receptor potential 1 (TRPA1) gene is increased in many solid tumours, and its function relates to inflammation, oxidative stress or the presence of toxic substances. However, little is known about the correlation of clinical parameters with patients' cancer stages, metastases and the degree of tumour infiltration by immune cells. We performed a bioinformatic analysis, using databases and public resources to investigate TRPA1 for many available samples.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary.
Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!