Textured barium titanate (BaTiO(3)) films are attracting immense research interest due to their lead-free composition and excellent piezoelectric and dielectric properties. Most synthesis methods for these films require a high temperature, leading to the formation of a secondary phase and an overall decrease in the electrical properties of the ceramic. In order to alleviate these issues, a novel fabrication method is introduced by transferring oriented rutile TiO(2) nanowires to a textured BaTiO(3) film at temperatures below 160 °C. The microstructure and thickness of the fabricated BaTiO(3) films were characterized by scanning electron microscopy, and the crystal structure and degree of orientation were evaluated by x-ray diffraction patterns using the Lotgering method. It is shown that the thickness of the BaTiO(3) film can be controlled by the length of TiO(2) nanowire array template, and the degree of orientation of the textured BaTiO(3) films is highly dependent on the film thickness; the crystallographic orientation has been measured to reach up to 87%. The relative dielectric constant (ε(r) = 1300) and ferroelectric properties (P(r) = 2.7 μC cm(-2), E(c) = 4.0 kV mm(-1)) of the textured BaTiO(3) films were also characterized to demonstrate their potential application in sensors, random access memory, and micro-electromechanical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/9/095602 | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.
View Article and Find Full Text PDFNanoscale
January 2025
Center for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
Nanomaterials (Basel)
October 2024
Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant () and extremely low dielectric loss (tan ). By varying the substrate deposition temperature () over a wide range (300-800 °C), we identified = 550 °C as the optimal temperature for growing BTO films with an as high as ~3060 and a tan as low as 0.04 (at 20 kHz).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Guemjeong-gu, Busan 46241, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!