Purpose: Development of a novel, rapid, miniaturized approach to identify amorphous solid dispersions with maximum supersaturation and solid state stability.
Method: Three different miniaturized assays are combined in a 2-step decision process to assess the supersaturation potential and drug-polymer miscibility and stability of amorphous compositions. Step 1: SPADS dissolution assay. Drug dissolution is determined in 96-well plates to detect systems that generate and maintain supersaturation. Promising combinations graduate to step 2. Step 2: SPADS interaction and SPADS imaging assays. FTIR microspectroscopy is used to study intermolecular interactions. Atomic force microscopy is applied to analyze molecular homogeneity and stability. Based on the screening results, selected drug-polymer combinations were also prepared by spray-drying and characterized by classical dissolution tests and a 6-month physical stability study.
Results: From the 7 different polymers and 4 drug loads tested, EUDRAGIT E PO at a drug load of 20% performed best for the model drug CETP(2). The classical dissolution and stability tests confirmed the results from the miniaturized assays.
Conclusion: The results demonstrate that the SPADS approach is a useful de-risking tool allowing the rapid, rational, time- and cost-effective identification of polymers and drug loads with appropriate dual function in supersaturation performance and amorphous drug stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2013.01.009 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11491, Saudi Arabia.
: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. : Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea.
Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.
Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.
Sci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFInflammopharmacology
December 2024
Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan.
Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!