The inferior colliculus (IC) integrates ascending auditory input from the lower brainstem and descending input from the auditory cortex. Understanding how IC cells integrate these inputs requires identification of their synaptic arrangements. We describe excitatory synapses in the dorsal cortex, central nucleus, and lateral cortex of the IC (ICd, ICc and IClc) in guinea pigs. We used electron microscopy (EM) and post-embedding anti-GABA immunogold histochemistry on aldehyde-fixed tissue from pigmented adult guinea pigs. Excitatory synapses were identified by round vesicles, asymmetric synaptic junctions, and gamma-aminobutyric acid-immunonegative (GABA-negative) presynaptic boutons. Excitatory synapses constitute ∼60% of the synapses in each IC subdivision. Three types can be distinguished by presynaptic profile area and number of mitochondrial profiles. Large excitatory (LE) boutons are more than 2 μm(2) in area and usually contain five or more mitochondrial profiles. Small excitatory (SE) boutons are usually less than 0.7 μm(2) in area and usually contain 0 or 1 mitochondria. Medium excitatory (ME) boutons are intermediate in size and usually contain 2 to 4 mitochondria. LE boutons are mostly confined to the ICc, while the other two types are present throughout the IC. Dendritic spines are the most common target of excitatory boutons in the IC dorsal cortex, whereas dendritic shafts are the most common target in other IC subdivisions. Finally, each bouton type terminates on both gamma-aminobutyric acid-immunopositive (GABA+) and GABA-negative (i.e., glutamatergic) targets, with terminations on GABA-negative profiles being much more frequent. The ultrastructural differences between the three types of boutons presumably reflect different origins and may indicate differences in postsynaptic effect. Despite such differences in origins, each of the bouton types contact both GABAergic and non-GABAergic IC cells, and could be expected to activate both excitatory and inhibitory IC circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657712 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2013.01.061 | DOI Listing |
Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.
View Article and Find Full Text PDFWhile CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.
View Article and Find Full Text PDFUnlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.
View Article and Find Full Text PDFNat Commun
January 2025
School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!