AI Article Synopsis

  • Iron regulatory proteins (Irps) 1 and 2 manage the expression of genes related to iron metabolism, affecting key proteins like ferritin and transferrin receptor.
  • Mice lacking Irp1 showed severe health issues like pulmonary hypertension and increased red blood cell counts, especially when on a low-iron diet.
  • The absence of Irp1 led to elevated HIF2α levels, which resulted in more erythropoietin production and related complications, illustrating the crucial role of Irp1 in iron regulation and its impact on respiratory and blood health.

Article Abstract

Iron regulatory proteins (Irps) 1 and 2 posttranscriptionally control the expression of transcripts that contain iron-responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor, and hypoxia-inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low-iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1(-/-) mice, which led to increased erythropoietin (EPO) expression, polycythemia, and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1(-/-) mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569856PMC
http://dx.doi.org/10.1016/j.cmet.2012.12.016DOI Listing

Publication Analysis

Top Keywords

pulmonary hypertension
16
iron regulatory
8
irp1-/- mice
8
iron deficiency
8
mice
6
pulmonary
5
expression
5
deletion iron
4
regulatory protein
4
protein polycythemia
4

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

A prediction study on the occurrence risk of heart disease in older hypertensive patients based on machine learning.

BMC Geriatr

January 2025

Department of Cardiology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, China.

Objective: Constructing a predictive model for the occurrence of heart disease in elderly hypertensive individuals, aiming to provide early risk identification.

Methods: A total of 934 participants aged 60 and above from the China Health and Retirement Longitudinal Study with a 7-year follow-up (2011-2018) were included. Machine learning methods (logistic regression, XGBoost, DNN) were employed to build a model predicting heart disease risk in hypertensive patients.

View Article and Find Full Text PDF

NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming.

Cell Signal

January 2025

Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:

Pulmonary artery hypertension (PAH) is characterized by a cancer-like metabolic shift towards aerobic glycolysis. Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone methyltransferase, has been implicated in PAH, yet its precise role remains unclear. In this study, we induced PAH in C57BL/6 mice using monocrotaline (MCT) and observed increased FOLR1 expression in PAH tissues, which was suppressed by NSD2 knockdown.

View Article and Find Full Text PDF

Due to the lack of specific antibody anti-chicken tumor necrosis factor receptor-associated factor 2 (TRAF2), it is difficult to further explore the role of TRAF2 in pulmonary artery remodeling in pulmonary hypertension(PH) in broilers. In this experiment, we prepared a polyclonal antibody to TRAF2 by constructing a TRAF2 recombinant protein prokaryotic expression vector and analyzed the expression of TRAF2 in in vivo and in vitro models of pulmonary hypertension in broiler chickens and the effect of TRAF2 on the activity and apoptosis of PASMCs. The results showed that after immunization with TRAF2 recombinant protein we obtained high titers of polyclonal antibodies, and astragalus polysaccharide as an immune adjuvant could enhance the effect of immunization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!