Objectives: Shock waves have been shown to induce recruitment of intravenously injected endothelial progenitor cells to ischemic hind limbs in rats. We hypothesized that shock wave treatment as sole therapy would induce angiogenesis in this ischemia model and would lead to mobilization of endogenous endothelial (progenitor) cells.

Methods: A total of 18 rats, aged 5 weeks old, were subdivided into 3 groups: sham (n = 6), ischemic muscle with shock wave treatment (shock wave treatment group, n = 6), and without shock wave treatment (control, n = 6). Hind limb ischemia was induced by ligation of the femoral artery. Three weeks later, shock wave treatment (300 impulses at 0.1 mJ/mm(2)) was applied to the adductor muscle; the controls were left untreated. Muscle samples were analyzed using real-time polymerase chain reaction for angiogenic factors and chemoattractants for endothelial progenitor cell mobilization. Fluorescence activated cell sorting analysis of the peripheral blood was performed for CD31/CD34-positive cells. Perfusion was measured using laser Doppler imaging. Functional improvement was evaluated by walking analysis.

Results: Angiogenic factors/endothelial progenitor cell chemoattractants, stromal cell-derived factor-1 and vascular endothelial growth factor, were increased in the treatment group, as shown by real-time polymerase chain reaction, indicating the mobilization of endothelial progenitor cells. Fluorescence activated cell sorting analysis of the peripheral blood revealed high numbers of CD31/CD34-positive cells in the treatment group. Greater numbers of capillaries were found in the treated muscles. Blood perfusion increased markedly in the treatment group and led to functional restoration, as shown by the results from the walking analysis.

Conclusions: Shock wave therapy therefore could develop into a feasible alternative to stem cell therapy in regenerative medicine, in particular for ischemic heart and limb disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2013.01.017DOI Listing

Publication Analysis

Top Keywords

shock wave
28
wave treatment
24
endothelial progenitor
16
treatment group
16
treatment
9
shock
8
ischemia model
8
progenitor cells
8
real-time polymerase
8
polymerase chain
8

Similar Publications

The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is the most prevalent form of osteoarthritis and a leading cause of chronic pain in adults. This study aimed to compare the short-term effects of extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and pulsed electromagnetic field therapy (PEMF) on pain, function, and quality of life in patients with knee OA. A hundred and twenty patients with Kellgren-Lawrence grade 2-3 knee OA were randomized into four groups: ESWT (once a week for three sessions), LLLT (twice a week for eight sessions), PEMF (twice a week for eight sessions), and a control group with 30 patients in each group.

View Article and Find Full Text PDF

Endoscopic Management of Benign Pancreaticobiliary Disorders.

J Clin Med

January 2025

Division of Gastroenterology and Hepatology, Center for Digestive Health, Virginia Mason, Franciscan Health, Seattle, WA 98101, USA.

Endoscopic management of benign pancreaticobiliary disorders encompasses a range of procedures designed to address complications in gallstone disease, choledocholithiasis, and pancreatic disorders. Acute cholecystitis is typically treated with cholecystectomy or percutaneous drainage (PT-GBD), but for high-risk or future surgical candidates, alternative decompression methods, such as endoscopic transpapillary gallbladder drainage (ETP-GBD), and endoscopic ultrasound (EUS)-guided gallbladder drainage (EUS-GBD), are effective. PT-GBD is associated with significant discomfort as well as variable adverse event rates.

View Article and Find Full Text PDF

Objective: Removal of a transcutaneous osseintegrated endo-fix stem (ESKA Orthopaedic, Lübeck, Germany) following a fatigue fracture of the implant, whilst protecting the residual femur bone to allow transcutaneous osseointegrated prosthesis system (TOPS) reimplantation.

Indications: A patient's request for a further TOPS implantation following a fatigue fracture of a circular osseointegrated implant stem.

Contraindications: Impending destruction of the bone tube through mobilisation of the femoral implant stem with insufficient thickness of the cortical wall (< 2-3 mm).

View Article and Find Full Text PDF

Synchronized acoustic emission and high-speed imaging of cavitation-induced atomization: The role of shock waves.

Ultrason Sonochem

January 2025

School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.

This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!