A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HCN2/SkM1 gene transfer into canine left bundle branch induces stable, autonomically responsive biological pacing at physiological heart rates. | LitMetric

Objectives: This study sought to test the hypothesis that hyperpolarization-activated cyclic nucleotide-gated (HCN)-based biological pacing might be improved significantly by hyperpolarizing the action potential (AP) threshold via coexpression of the skeletal muscle sodium channel 1 (SkM1).

Background: Gene-based biological pacemakers display effective in vivo pacemaker function. However, approaches used to date have failed to manifest optimal pacemaker properties, defined as basal beating rates of 60 to 90 beats/min, a brisk autonomic response achieving maximal rates of 130 to 160 beats/min, and low to absent electronic backup pacing.

Methods: We implanted adenoviral SkM1, HCN2, or HCN2/SkM1 constructs into left bundle branches (LBB) or left ventricular (LV) epicardium of atrioventricular-blocked dogs.

Results: During stable peak gene expression on days 5 to 7, HCN2/SkM1 LBB-injected dogs showed highly stable in vivo pacemaker activity superior to SkM1 or HCN2 alone and superior to LV-implanted dogs with regard to beating rates (resting approximately 80 beats/min; maximum approximately 130 beats/min), no dependence on electronic backup pacing, and enhanced modulation of pacemaker function during circadian rhythm or epinephrine infusion. In vitro isolated LV of dogs overexpressing SkM1 manifested a significantly more negative AP threshold.

Conclusions: LBB-injected HCN2/SkM1 potentially provides a more clinically suitable biological pacemaker strategy than other reported constructs. This superiority is attributable to the more negative AP threshold and injection into the LBB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490253PMC
http://dx.doi.org/10.1016/j.jacc.2012.12.031DOI Listing

Publication Analysis

Top Keywords

left bundle
8
biological pacing
8
vivo pacemaker
8
pacemaker function
8
beating rates
8
electronic backup
8
skm1 hcn2
8
pacemaker
5
hcn2/skm1
4
hcn2/skm1 gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!