Flexible nanoassembly for sequestering non-native proteins.

Structure

Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.

Published: February 2013

A crystal structure of a yeast small heat shock protein reported by Hanazono and colleagues in this issue of Structure reveals the versatility of the α-crystallin domain dimer for building assemblies of different size and symmetry. The domains assemble into a vessel filled with hydrophobic sequence extensions enriched with phenylalanines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2013.01.009DOI Listing

Publication Analysis

Top Keywords

flexible nanoassembly
4
nanoassembly sequestering
4
sequestering non-native
4
non-native proteins
4
proteins crystal
4
crystal structure
4
structure yeast
4
yeast small
4
small heat
4
heat shock
4

Similar Publications

Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances.

View Article and Find Full Text PDF

A Rootless Duckweed-Inspired Flexible Artificial Leaf from Plasmonic Photocatalysts.

ACS Nano

October 2024

Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.

Article Synopsis
  • The study introduces a flexible, lightweight artificial leaf inspired by duckweed that efficiently converts solar energy into chemical energy, overcoming limitations found in current photocatalytic systems.
  • This artificial leaf utilizes a unique design featuring Janus plasmonic nanosheets made from gold nanocubes and a thin layer of palladium, allowing it to float on water and perform reactions without additional equipment.
  • In tests, this innovative system demonstrated significantly higher reaction efficiencies compared to traditional methods, with a 2.5-fold and 65-fold increase in efficiency for different systems, and is analyzed through film theory for its kinetic and thermodynamic properties.
View Article and Find Full Text PDF
Article Synopsis
  • Bacterial magnetosomes (MAGs) are tiny magnetic particles made by bacteria that could be really useful in medicine and technology.
  • Scientists improved how to attach different proteins to these MAGs, making them more versatile and easier to work with.
  • The new method allows MAGs to hold various helpful items like enzymes and antibodies, making them a powerful tool for many applications in biotechnology and biomedicine.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!