We have prepared and characterized a new set of highly fluorescent gold nanoclusters (AuNCs) using one-step aqueous reduction of a gold precursor in the presence of bidentate ligands made of lipoic acid anchoring groups, appended with either a poly(ethylene glycol) short chain or a zwitterion group. The AuNCs fluoresce in the red to near-infrared region of the optical spectrum with emission centered at ∼750 nm and a quantum yield of ∼10-14%, and they exhibit long fluorescence lifetimes (up to ∼300 ns). Dispersions of these AuNCs exhibit great long-term colloidal stability, over a wide range of pHs (2-13) and in the presence of high electrolyte concentrations, and a strong resistance to reducing agents such as glutathione. The growth strategy further permitted the controlled, in situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), making these nanoclusters compatible with common and simple-to-implement coupling strategies, such as carbodiimide chemistry. These properties combined make these fluorescent NCs greatly promising for use in various imaging and sensing applications where NIR and long-lived excitations are desired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn305856t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!