Proteomic profiling of Trastuzumab (Herceptin(R))-sensitive and -resistant SKBR-3 breast cancer cells.

Anticancer Res

Centro di Oncobiologia Sperimentale (C.OB.S.), Oncology Department, La Maddalena, Via San Lorenzo Colli 112d, 90146 Palermo, Italy.

Published: February 2013

Background: The Human Epidermal Growth Factor Receptor 2 (HER-2), overexpressed in 25-30% of breast carcinomas (BC), is the therapeutic target for trastuzumab, a recombinant humanized monoclonal antibody. The initial response to trastuzumab is often followed by drug-insensitivity within one year. Several hypotheses have been raised to explain this event, but the mechanisms behind the responses to trastuzumab are still unclear.

Aim: To study the effects of short and prolonged trastuzumab treatment on the proteomic profiles of HER-2-overexpressing SKBR-3 BC cells.

Materials And Methods: Cells were treated with trastuzumab to obtain sensitive and resistant clones. The drug effects were evaluated at the phenotypical and proteomic levels.

Results: In the trastuzumab-resistant cells the expression of a large amount of proteins, initially affected by treatment, reverted to levels of the untreated cells.

Conclusion: The results obtained so far illustrate for the first time a large-scale differential protein expression between trastuzumab-treated and untreated cells, and between trastuzumab-sensitive and resistant cells. We believe that the results obtained will help to increase the knowledge of the molecular effects of trastuzumab and will be useful to better-understand the drug resistance mechanisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

trastuzumab
7
cells
5
proteomic profiling
4
profiling trastuzumab
4
trastuzumab herceptinr-sensitive
4
herceptinr-sensitive -resistant
4
-resistant skbr-3
4
skbr-3 breast
4
breast cancer
4
cancer cells
4

Similar Publications

Metastatic triple-negative breast cancer has a poor prognosis and poses significant therapeutic challenges. Until recently, limited therapeutic options have been available for patients with advanced disease after failure of first-line chemotherapy. The aim of this review is to assess the current evidence supporting second-line treatment options in patients with metastatic triple-negative breast cancer.

View Article and Find Full Text PDF

HER2-positive gastric cancer (GC), a unique molecular subtype, has garnered significant interest in recent years. Here, we review clinical trial data on advanced HER2-positive GC from the past 15 years. Trastuzumab plus standard chemotherapy remain the first-line treatment.

View Article and Find Full Text PDF

Background: Trastuzumab deruxtecan (T-DXd) has shown promising activity in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and central nervous system (CNS) involvement. In this updated meta-analysis, we explore the effectiveness of T-DXd in a large subset of patients with HER2-positive BC and CNS disease.

Methods: A systematic search was made on September 16th, 2024, for studies investigating T-DXd in the scenario of HER2-positive BC and brain metastases (BMs) and/or leptomeningeal disease (LMD).

View Article and Find Full Text PDF

HER2-targeted ADC DX126-262 combined with chemotherapy demonstrates superior antitumor efficacy in HER2-positive gastric cancer.

Am J Cancer Res

December 2024

Hangzhou DAC Biotechnology Co., Ltd. No. 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China.

Gastric cancer is a common malignant tumor with high incidence and mortality. The overexpression of Human epidermal growth factor receptor 2 (HER2) is associated with increased metastatic potential and poor clinical outcome in gastric cancer. Despite the proven clinical response rates of approved HER2-targeted therapies, including Trastuzumab combined with chemotherapy, their limited long-term clinical benefits and inevitable disease progression still pose significant challenges to the clinical treatment of gastric cancer.

View Article and Find Full Text PDF

Unlabelled: The choice of media and feeds significantly influences the performance of Chinese Hamster Ovary (CHO) mammalian cell cultures in producing desired biologics like monoclonal antibodies (mAb). Sub-optimal nutrient feed/media composition can severely impact cell proliferation and the quality of the final mAb product. For instance, proper protein glycosylation, crucial for mAb stability, safety, and efficacy, heavily relies on cell culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!