Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time-dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characterized using sandwich-cultured human hepatocytes, and intrinsic metabolic parameters were used to build a dynamic whole-body physiologically-based pharmacokinetic (PBPK) model. The PBPK model adequately described repaglinide plasma concentration-time profiles and successfully predicted area under the plasma concentration-time curve ratios of repaglinide (within ± 25% error), dosed (staggered 0-24 hours) after rifampicin treatment when primarily considering induction of CYP3A4 and reversible inhibition of OATP1B1 by rifampicin. Further, a static mechanistic "extended net-effect" model incorporating transport and metabolic disposition parameters of repaglinide and interaction potency of rifampicin was devised. Predictions based on the static model are similar to those observed in the clinic (average error ∼19%) and to those based on the PBPK model. Both the models suggested that the combined effect of increased gut extraction and decreased hepatic uptake caused minimal repaglinide systemic exposure change when repaglinide is dosed simultaneously or 1 hour after the rifampicin dose. On the other hand, isolated induction effect as a result of temporal separation of the two drugs translated to an approximate 5-fold reduction in repaglinide systemic exposure. In conclusion, both dynamic and static mechanistic models are instrumental in delineating the quantitative contribution of transport and metabolism in the dosing time-dependent repaglinide-rifampicin interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.112.050583 | DOI Listing |
Int J Antimicrob Agents
January 2025
Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden. Electronic address:
Objectives: To expand a translational pharmacokinetic-pharmacodynamic (PKPD) modelling approach for assessing the combined effect of polymyxin B and minocycline against Klebsiella pneumoniae.
Methods: A PKPD model developed based on in vitro static time-kill experiments of one strain (ARU613) was first translated to characterize that of a more susceptible strain (ARU705), and thereafter to dynamic time-kill experiments (both strains) and to a murine thigh infection model (ARU705 only). The PKPD model was updated stepwise using accumulated data.
Food Res Int
January 2025
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:
The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations.
View Article and Find Full Text PDFJ Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address:
Development of a next-generation chromatographic model, capable of simultaneously meeting academic demands for thermodynamic consistency and industrial requirements in everyday project work, has become a focal point of research. In this study, anti-Langmuirian to Langmuirian (AL-L) elution behavior was observed in cation-exchange chromatographic separation of charge variants of industrial Fc-fusion proteins. To characterize this behavior, the multi-protein Mollerup activity model was integrated into the steric mass action (SMA) model, resulting in a new model named the generalized ion-exchange (nGIEX) isotherm for multi-protein systems.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia.
Multiple anthropogenic stressors degrade ecosystems globally. A key knowledge gap in multiple stressor research is how variability in stressor intensity (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!