Biochemistry textbook presentations of bioenergetics and mitochondrial function normally focus on the chemiosmotic theory with introduction of the tricarboxylic acid cycle and the electron transport chain, the proton and electrical gradients and subsequent oxidative phosphorylation and ATP-production by ATP synthase. The compound glutathione (GSH) is often mentioned in relation to mitochondrial function, primarily for a role as redox scavenger. Here we argue that its role as redox pair with oxidised glutathione (GSSG) is pivotal with regard to controlling the electrical or redox gradient across the mitochondrial inner-membrane. The very high concentration of taurine in oxidative tissue has recently led to discussions on the role of taurine in the mitochondria, e.g. with taurine acting as a pH buffer in the mitochondrial matrix. A very important consequence of the slightly alkaline pH is the fact that the NADH/NAD(+) redox pair can be brought in redox equilibrium with the GSH redox pair GSH/GSSG.An additional consequence of having GSH as redox buffer is the fact that from the pH dependence of its redox potential, it becomes possible to explain that the mitochondrial membrane potential has been observed to be independent of the matrix pH. Finally a simplified model for mitochondrial oxidation is presented with introduction of GSH as redox buffer to stabilise the electrical gradient, and taurine as pH buffer stabilising the pH gradient, but simultaneously establishing the equilibrium between the NADH/NAD(+) redox pair and the redox buffer pair GSH/GSSG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-6093-0_1 | DOI Listing |
Cell Rep
January 2025
Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.
View Article and Find Full Text PDFNat Chem
January 2025
Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.
View Article and Find Full Text PDFAging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD) or reduced (NADH) states, which together form a key NADH/NAD redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!