Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences.

IEEE Trans Biomed Eng

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester M1 5GD, UK.

Published: July 2013

We address the problem of tracking in vivo muscle fascicle shape and length changes using ultrasound video sequences. Quantifying fascicle behavior is required to improve understanding of the functional significance of a muscle's geometric properties. Ultrasound imaging provides a noninvasive means of capturing information on fascicle behavior during dynamic movements; to date however, computational approaches to assess such images are limited. Our approach to the problem is novel because we permit fascicles to take up nonlinear shape configurations. We achieve this using a Bayesian tracking framework that is: 1) robust, conditioning shape estimates on the entire history of image observations; and 2) flexible, enforcing only a very weak Gaussian Process shape prior that requires fascicles to be locally smooth. The method allows us to track and quantify fascicle behavior in vivo during a range of movements, providing insight into dynamic changes in muscle geometric properties which may be linked to patterns of activation and intramuscular forces and pressures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768108PMC
http://dx.doi.org/10.1109/TBME.2013.2245328DOI Listing

Publication Analysis

Top Keywords

fascicle behavior
12
muscle fascicle
8
geometric properties
8
fascicle
5
estimating skeletal
4
skeletal muscle
4
fascicle curvature
4
curvature b-mode
4
b-mode ultrasound
4
ultrasound image
4

Similar Publications

An 11-year-old girl presented with a soft tissue lesion on the dorsal aspect of the left middle finger. Ultrasound imaging demonstrated a 2.8 cm × 0.

View Article and Find Full Text PDF

Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts.

NPJ Sci Food

December 2024

Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.

Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

Objectives: Proximal median nerve (PMN) neuropathies are caused by lesions proximal to the carpal tunnel, which include the forearm, elbow, upper arm, and brachial plexus. Differentiating between carpal tunnel syndrome and PMN neuropathies is important to guide management and is based on clinical, electrodiagnostic (EDX), and ultrasound (US) findings. This study describes the clinical, EDX, and US features in 62 patients with PMNs.

View Article and Find Full Text PDF

New insights into the impact of bed rest on lumbopelvic muscles: A computer-vision model approach to measure fat fraction changes.

J Appl Physiol (1985)

November 2024

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Space agencies plan crewed missions to the Moon and Mars. However, microgravity-induced lumbopelvic deconditioning, characterized by an increased fat fraction (FF) due to reduced physical activity, poses a significant challenge to spine health. This study investigates the spatial distribution of FF in the lumbopelvic muscles to identify the most affected regions by deconditioning, utilizing a computer-vision model and a tile-based approach to assess FF changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!