Multispecific antibody-like molecules have the potential to advance the standard-of-care in many human diseases. The design of therapeutic molecules in this class, however, has proven to be difficult and, despite significant successes in preclinical research, only one trivalent antibody, catumaxomab, has demonstrated clinical utility. The challenge originates from the complexity of the design space where multiple parameters such as affinity, avidity, effector functions, and pharmaceutical properties need to be engineered in concurrent fashion to achieve the desired therapeutic efficacy. Here, we present a rapid prototyping approach that allows us to successfully optimize these parameters within one campaign cycle that includes modular design, yeast display of structure focused antibody libraries and high throughput biophysical profiling. We delineate this approach by presenting a design case study of MM-141, a tetravalent bispecific antibody targeting two compensatory signaling growth factor receptors: insulin-like growth factor 1 receptor (IGF-1R) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3). A MM-141 proof-of-concept (POC) parent molecule did not meet initial design criteria due to modest bioactivity and poor stability properties. Using a combination of yeast display, structured-guided antibody design and library-scale thermal challenge assay, we discovered a diverse set of stable and active anti-IGF-1R and anti-ErbB3 single-chain variable fragments (scFvs). These optimized modules were reformatted to create a diverse set of full-length tetravalent bispecific antibodies. These re-engineered molecules achieved complete blockade of growth factor induced pro-survival signaling, were stable in serum, and had adequate activity and pharmaceutical properties for clinical development. We believe this approach can be readily applied to the optimization of other classes of bispecific or even multispecific antibody-like molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893234 | PMC |
http://dx.doi.org/10.4161/mabs.23363 | DOI Listing |
Front Immunol
November 2024
Mozart Therapeutics, Seattle, WA, United States.
Nat Commun
October 2024
Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)γ protein complex.
View Article and Find Full Text PDFClin Cancer Res
September 2024
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Purpose: 4-1BB (CD137) is a costimulatory immune receptor expressed on activated T cells, activated B cells, natural killer cells and tumor-infiltrating lymphocytes, making it a promising target for cancer immunotherapy. Cinrebafusp alfa, a monoclonal antibody-like bispecific protein targeting HER2 and 4-1BB, aims to localize 4-1BB activation to HER2-positive tumors. This study evaluated the safety, tolerability, and preliminary efficacy of cinrebafusp alfa in patients with previously treated HER2-positive malignancies.
View Article and Find Full Text PDFMAbs
August 2024
R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA.
T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!