Bisdithiazolyl radical spin ladders.

Inorg Chem

Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: February 2013

A series of four bisdithiazolyl radicals 1a-d (R(1) = Pr, Bu, Pn, Hx; R(2) = F) has been prepared and characterized by X-ray crystallography. The crystal structure of 1a (R(1) = Pr) belongs to the tetragonal space group P42(1)m and consists of slipped π-stack arrays of undimerized radicals packed about 4 centers running along the z-direction, an arrangement identical to that found for 1 (R(1) = Et; R(2) = F). With increasing chain length of the R(1) substituent, an isomorphous set 1b-d is generated. All three compounds crystallize in the P2(1)/c space group and consist of pairs of radical π-stacks locked together by strong intermolecular F···S' bridges to create spin ladder arrays. The slipped π-stack alignment of radicals produces close S···S' interactions which serve as the "rungs" of a spin ladder, and the long chain alkyl substituents (R(1)) serve as buffers which separate the ladders from each other laterally. Variable temperature magnetic susceptibility measurements indicate that 1a behaves as an antiferromagnetically coupled Curie-Weiss paramagnet, the behavior of which may be modeled as a weakly coupled AFM chain. Stronger antiferromagnetic coupling is observed in 1b-d, such that the Curie-Weiss fit is no longer applicable. Analysis of the full data range (T = 2-300 K) is consistent with the Johnston strong-leg spin ladder model. The origin of the magnetic behavior across the series has been explored with broken-symmetry Density Functional Theory (DFT) calculations of individual pairwise exchange energies. These confirm that strong antiferromagnetic interactions are present within the ladder "legs" and "rungs", with only very weak magnetic exchange between the ladders.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic302658cDOI Listing

Publication Analysis

Top Keywords

spin ladder
12
space group
8
slipped π-stack
8
bisdithiazolyl radical
4
spin
4
radical spin
4
spin ladders
4
ladders series
4
series bisdithiazolyl
4
bisdithiazolyl radicals
4

Similar Publications

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.

Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).

View Article and Find Full Text PDF

In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.

View Article and Find Full Text PDF

electronic structures and total internal partition sums of FeH.

Phys Chem Chem Phys

January 2025

Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

In the present work, we studied 27 FeH and 6 FeH electronic states using multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] wavefunction theory (WFT) calculations conjoined with large quadruple- and quintuple- quality correlation consistent basis sets. We report their potential energy curves (PEC), energy related properties, spectroscopic parameters, and spin-orbit couplings. Dipole moment curves (DMC) and transition dipole moment curves (TDMC) of several low-lying electronic states of FeH and FeH are also introduced.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on a newly discovered family of Rare Earth (RE)-based spin ladder compounds, BaREGeO (RE = Pr, Nd, Gd-Ho), which contrasts with the more commonly studied transition metal-based compounds.
  • These compounds have a unique two-leg spin ladder structure with strong interactions facilitated by RE-O connections, making them significant for studying spin dynamics.
  • Notably, BaDyGeO exhibits interesting low-temperature behaviors, including a spin-dimerized state and antiferromagnetic order, highlighting the potential for exploring unique magnetic and quantum properties in 4f electron systems.
View Article and Find Full Text PDF

Conformational Control of σ-Interference Effects in the Conductance of Permethylated Oligosilanes.

J Am Chem Soc

December 2024

Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.

As silicon-based integrated circuits continue to shrink, their molecular characteristics become more pronounced. However, the structure-property relationship of silicon-based molecular junctions remains to be elucidated. Here, an intuitive explanation of the effects of backbone dihedral angles on transport properties in permethylated oligosilanes is presented employing the Ladder C model Hamiltonian combined with nonequilibrium Green's function formalism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!