Both situational (e.g., perceived power) and sustained social factors (e.g., cultural stereotypes) are known to affect how people academically perform, particularly in the domain of mathematics. The ability to compute even simple mathematics, such as addition, relies on distinct neural circuitry within the inferior parietal and inferior frontal lobes, brain regions where magnitude representation and addition are performed. Despite prior behavioral evidence of social influence on academic performance, little is known about whether or not temporarily heightening a person's sense of power may influence the neural bases of math calculation. Here we primed female participants with either high or low power (LP) and then measured neural response while they performed exact and approximate math problems. We found that priming power affected math performance; specifically, females primed with high power (HP) performed better on approximate math calculation compared to females primed with LP. Furthermore, neural response within the left inferior frontal gyrus (IFG), a region previously associated with cognitive interference, was reduced for females in the HP compared to LP group. Taken together, these results indicate that even temporarily heightening a person's sense of social power can increase their math performance, possibly by reducing cognitive interference during math performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565186 | PMC |
http://dx.doi.org/10.3389/fnhum.2012.00350 | DOI Listing |
Integr Environ Assess Manag
January 2025
Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Maroussi, Greece.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place.
View Article and Find Full Text PDFChaos
January 2025
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA.
This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.
We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
This work introduces the Adsorption Energy Distribution (AED) calculation using competitive adsorption isotherm data, enabling investigation of the simultaneous AED of two components for the first time. The AED provides crucial insights by visualizing competitive adsorption processes, offering an alternative adsorption isotherm model without prior assuming adsorption heterogeneity, and assisting in model selection for more accurate retention mechanistic modeling. The competitive AED enhances our understanding of multicomponent interactions on stationary phases, which is crucial for understanding how analytes compete on the stationary phase surface and for selecting adsorption models for numerical optimization of preparative chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!