A single-nucleotide polymorphism (rs2274223: A5780G:His1927Arg) in the phospholipase C epsilon gene (PLCϵ) was recently identified as a susceptibility locus for esophageal cancer in Chinese subjects. To determine the underlying mechanisms of PLCϵ and this SNP in esophageal carcinogenesis, we analyzed PLCϵ genotypes, expression, and their correlation in esophageal cancer cell lines, non-transformed esophageal cells, 58 esophageal squamous cell carcinomas and 10,614 non-cancer subjects from China. We found that the G allele (AG or GG) was associated with increased PLCϵ mRNA and protein expression in esophageal cancer tissues and in esophageal cancer cell lines. G allele was also associated with higher enzyme activity, which might be associated with increased protein expression. Quantitative analysis of the C2 domain sequences revealed that A:G allelic imbalance was strongly linked to esophageal malignancy. Moreover, the analysis of 10,614 non-cancer subjects demonstrated that the G allele was strongly associated with moderate to severe esophagitis in the subjects from the high-incidence areas of China (OR 6.03, 95% CI 1.59-22.9 in high-incidence area vs. OR 0.74, 95% CI 0.33-1.64 in low-incidence area; P = 0.008). In conclusion, the PLCϵ gene, particularly the 5780G allele, might play a pivotal role in esophageal carcinogenesis via upregulating PLCϵ mRNA, protein, and enzyme activity, and augmenting inflammatory process in esophageal epithelium. Thus, 5780G allele may constitute a promising biomarker for esophageal squamous cell carcinoma risk stratification, early detection, and progression prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931523PMC
http://dx.doi.org/10.1002/mc.22016DOI Listing

Publication Analysis

Top Keywords

esophageal cancer
16
esophageal
12
allele associated
12
phospholipase epsilon
8
esophageal carcinogenesis
8
cancer cell
8
cell lines
8
esophageal squamous
8
squamous cell
8
10614 non-cancer
8

Similar Publications

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Background: Long non-coding RNA (lncRNA) U731166 and microRNA (miR)-3607-3p are two ncRNAs with critical roles in cancer biology, while their involvement in esophageal squamous-cell carcinomas (ESCC) is unclear. We predicted that U731166 and miR-3607-3p might interact with each other. This study aimed to investigate their role and interaction in ESCC.

View Article and Find Full Text PDF

Background: Oesophageal cancer (EC) is one of the common malignant tumors, and the prognosis of patients is poor. Further exploration of EC pathogenesis remains warranted.

Objective: The relationship between vascular epithelial cadherin (VE-cadherin) and chitinase-3-like protein 1 (CHI3L1) in EC is currently unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!