Background: Resistance to chemotherapy represents a significant obstacle in prostate cancer therapeutics. Novel mechanistic understandings in cancer cell chemotherapeutic sensitivity and resistance can optimize treatment and improve patient outcome. Molecular alterations in the metabolic pathways are associated with cancer development; however, the role of these alterations in chemotherapy efficacy is largely unknown.

Methods: In a bed-side to bench-side reverse translational approach, we used cDNA microarray and qRT-PCR to identify genes that are associated with biochemical relapse after chemotherapy. Further, we tested the function of these genes in cell proliferation, metabolism, and chemosensitivity in prostate cancer cell lines.

Results: We report that the gene encoding mitochondrial malate dehydrogenase 2 (MDH2) is overexpressed in clinical prostate cancer specimens. Patients with MDH2 overexpression had a significantly shorter period of relapse-free survival (RFS) after undergoing neoadjuvant chemotherapy. To understand the molecular mechanism underlying this clinical observation, we observed that MDH2 expression was elevated in prostate cancer cell lines compared to benign prostate epithelial cells. Stable knockdown of MDH2 via shRNA in prostate cancer cell lines decreased cell proliferation and increased docetaxel sensitivity. Further, MDH2 shRNA enhanced docetaxel-induced activations of JNK signaling and induced metabolic inefficiency.

Conclusion: Taken together, these data suggest a novel function for MDH2 in prostate cancer development and chemotherapy resistance, in which MDH2 regulates chemotherapy-induced signal transduction and oxidative metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888097PMC
http://dx.doi.org/10.1002/pros.22650DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
cancer cell
16
malate dehydrogenase
8
jnk signaling
8
oxidative metabolism
8
cancer
8
cancer development
8
cell proliferation
8
cell lines
8
mdh2 shrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!