In the present study, new pyrazoline derivatives were synthesized via the reaction of 1-(chloroacetyl)-3-(2-furyl)-5-aryl-2-pyrazolines with sodium salts of N,N-disubstituted dithiocarbamic acids. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman's spectrophotometric method. The compounds were also investigated for their cytotoxic properties using the MTT assay. The most potent AChE inhibitor was found as compound 7 followed by compounds 27 and 17, when compared with eserine. Compounds effective on AChE carry the 2-dimethylaminoethyl moiety, which resembles the trimethylammonium group and the ethylene bridge of acetylcholine. Among all compounds, compound 7 bearing 2-dimethylaminoethyl and 3,4-methylenedioxyphenyl moieties was also found to be the most effective inhibitor of BuChE. The MTT assay indicated that the effective concentration of compound 7 was lower than its cytotoxic concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201200384DOI Listing

Publication Analysis

Top Keywords

pyrazoline derivatives
8
mtt assay
8
synthesis biological
4
biological evaluation
4
evaluation pyrazoline
4
derivatives bearing
4
bearing dithiocarbamate
4
dithiocarbamate moiety
4
moiety cholinesterase
4
cholinesterase inhibitors
4

Similar Publications

Synthesis, molecular dynamics simulation and antimicrobial activity of novel s-triazine clubbed with three different hybrid pharmacophores.

Biochem Biophys Res Commun

January 2025

Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, University of Johannesburg, Auckland Park Kingsway Campus, 2006, South Africa. Electronic address:

To address microbial infections and combat drug resistance, we designed, synthesized, and evaluated three novel s-triazine clubbed pharmacophores: 1-acetylpyrazoline (5a-e), 2-aminopyrimidine (6a-e), and 1,5-benzodiazepine (7a-e). These were derived from chalcone (4a-e), showing improved pharmacological profiles. The compounds underwent characterization by FTIR, NMR, and Mass Spectroscopy, and their antimicrobial activities, along with structure-activity relationships (SAR), were assessed using in silico and in vitro methods.

View Article and Find Full Text PDF

Background: Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.

View Article and Find Full Text PDF

Discovery of 2-Pyrazolines That Inhibit the Phosphorylation of STAT3 as Nanomolar Cytotoxic Agents.

ACS Omega

January 2025

Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India.

STAT3 has emerged as a validated target in cancer, being functionally associated with breast cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune surveillance. Previously, a series of compounds consisting of imidazo[1,2-]pyridine tethered 2-pyrazolines (referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+) BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-]pyridine clubbed 2-pyrazolines (-) and its amide derivatives (-) have been synthesized.

View Article and Find Full Text PDF

Pyrazoline is a 5-membered ring that has two adjacent nitrogen. It has gained advanced attention from medical and organic chemists due to very low cytotoxic activities. It is applicable and more applied in research fields and has various pharmacological activities, including cardiovascular, anti-tumor, and anti-cancer properties.

View Article and Find Full Text PDF

Background: A heterocyclic molecule containing five rings, three carbon atoms, two nitrogen atoms, and a single endocyclic bond is called pyrazoline. Because of its intriguing electrical characteristics and potential for dynamic applications, pyrazoline is one type of electron-rich nitrogen carrier that is becoming more and more popular. This study synthesizes pyrazoline derivatives using a variety of techniques to demonstrate a highly biological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!