Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

Sensors (Basel)

Electrical and Computer Systems Engineering, School of Engineering, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway 46150, Malaysia.

Published: February 2013

In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649373PMC
http://dx.doi.org/10.3390/s130202164DOI Listing

Publication Analysis

Top Keywords

mass loading
20
sezawa wave
20
wave mode
20
loading sensitivity
12
zno film
12
film thickness
12
sensitivity sezawa
8
wave
8
surface acoustic
8
acoustic wave
8

Similar Publications

Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries.

Nat Commun

January 2025

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.

The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.

View Article and Find Full Text PDF

This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.

View Article and Find Full Text PDF

Purpose: Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.

Methods: University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Sub-micrometer LiPSCl regulated cathodic Li kinetics in sulfide based all-solid-state batteries.

Phys Chem Chem Phys

January 2025

School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.

The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!