Speeding up liquid crystal SLMs using overdrive with phase change reduction.

Opt Express

Division for Biomedical Physics, Innsbruck Medical University, Mullerstraße 44, A-6020 Innsbruck, Austria.

Published: January 2013

Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from two mutually compatible approaches. The first technique involves the idea of overdrive, that is the calculation of intermediate patterns to speed up the transition to the target phase pattern. The second concerns optimization of the target pattern to reduce the required phase change applied to each pixel, which in addition leads to a substantial reduction of variations in the intensity of the diffracted light during the transition. When these methods are applied together, we observe transition times for the diffracted light fields of about 1 ms, which represents up to a tenfold improvement over current approaches. We experimentally demonstrate the improvements of the approach for applications such as holographic image projection, beam steering and switching, and real-time control loops.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.001779DOI Listing

Publication Analysis

Top Keywords

liquid crystal
8
phase change
8
diffraction efficiency
8
beam steering
8
diffracted light
8
speeding liquid
4
crystal slms
4
slms overdrive
4
overdrive phase
4
change reduction
4

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.

A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.

View Article and Find Full Text PDF

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

In this paper, we demonstrate a blazed phase grating to achieve tunable beam steering and propose a novel algorithm to reduce the stripe noise in wrapped phase. To control the diffraction angle to steer light to the desired direction, an electrically tunable transmission-type beam deflector based on liquid crystals is introduced, and electric fields are applied to the patterned indium tin oxide electrodes to change its phase retardation. Two different 2π phase-wrapping methods are applied to obtain various diffraction angles within the minimum cell-gap, and the method of equal interval of phase achieves a worthwhile diffraction efficiency compared to the methods based on equal interval of diffraction angle.

View Article and Find Full Text PDF

Evaluation of Permeability Recovery in Precast Concrete with Hybrid Capsules Using Constant-Head Permeability Test as Smart Construction Material.

Materials (Basel)

January 2025

Division of Smart Construction and Environmental Engineering, Daejin University, Pocheon 11159, Republic of Korea.

This study investigates the quality characteristics and healing performance of precast concrete incorporating self-healing technology, with the aim of supporting smart city implementation. To enhance the self-healing capabilities of concrete, hybrid self-healing capsules, combining solid capsules and liquid capsules, were utilized, and their applicability and practicality were assessed. The findings revealed that incorporating hybrid self-healing capsules into precast concrete resulted in a reduction in slump by up to 14% and air content by up to 9%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!