Photostimulated control of laser transmission through photoresponsive cholesteric liquid crystals.

Opt Express

Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA.

Published: January 2013

Cholesteric liquid crystals (CLCs) are selectively reflective optical materials, the color of which can be tuned via electrical, thermal, mechanical, or optical stimuli. In this work, we show that self-regulation of the transmission of a circularly polarized incident beam can occur upon phototuning of the selective reflection peak of a photosensitive CLC mixture towards the pump wavelength. The autonomous behavior occurs as the red-shifting selective reflection peak approaches the wavelength of the incident laser light. Once the red-edge of the CLC bandgap and incident laser wavelength overlap, the rate of tuning dramatically slows. The dwell time (i.e., duration of the overlap of stimulus wavelength with CLC bandgap) is shown to depend on the radiation wavelength, polarization, and intensity. Necessary conditions for substantial dwell time of the CLC reflection peak at the pump beam wavelength include irradiation with low intensity light (~1mW/cm²) and the utilization of circularly polarized light of the same handedness as the helical structure within the CLC. Monitoring the optical properties in both reflection and transmission geometries elucidates differences associated with attenuation of the light through the thickness of the CLC film.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.001645DOI Listing

Publication Analysis

Top Keywords

reflection peak
12
cholesteric liquid
8
liquid crystals
8
circularly polarized
8
selective reflection
8
incident laser
8
clc bandgap
8
dwell time
8
clc
6
wavelength
6

Similar Publications

Advanced microgrid optimization using price-elastic demand response and greedy rat swarm optimization for economic and environmental efficiency.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.

View Article and Find Full Text PDF

Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

As the second most populated country in Africa, Ethiopia needs public health measures to control diseases that impact its population. The goal of this study is to analyse disease burdens of HBV and HCV, while also highlighting their estimated associated costs for the country. A literature review and a Delphi process reflecting input of Ethiopian experts and the National Viral Hepatitis Technical Working Group were used to complement mathematical modelling to estimate HBV and HCV disease and economic burdens.

View Article and Find Full Text PDF

Maze tasks, originally developed in animal research, have become a popular method for studying human cognition, particularly with the advent of virtual reality. However, these experiments frequently rely on simplified environments and tasks, which may not accurately reflect the complexity of real-world situations. Our pilot study aims to transfer a multi-alternative maze with a complex task structure, previously demonstrated to be useful in studying animal cognition, to studying human spatial cognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!