Investigation of Fano resonance in planar metamaterial with perturbed periodicity.

Opt Express

State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, China.

Published: January 2013

In this paper, we report the formation of sharp Fano resonance in planar metamaterial array with perturbed periodicity. Rigorous sheet impedance theory is given to analyze the electric-magnetic and magnetic-magnetic coupling effects. It is found that periodicity perturbation can provide a general approach for Fano resonance with ultra-strong local field enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.000992DOI Listing

Publication Analysis

Top Keywords

fano resonance
12
resonance planar
8
planar metamaterial
8
perturbed periodicity
8
investigation fano
4
metamaterial perturbed
4
periodicity paper
4
paper report
4
report formation
4
formation sharp
4

Similar Publications

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Fano Resonance in Epsilon-Near-Zero Media.

Phys Rev Lett

December 2024

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses an ultra-wideband nanoscale metamaterial absorber designed for applications in the visible spectrum, emphasizing its ultrathin and flexible characteristics.
  • The study highlights the effective absorption capabilities of the structure, achieving an impressive maximum absorption rate of 86.66%, with a peak absorption of 99.88% for a single unit cell.
  • The research utilizes numerical analysis methods, like the Finite Difference Time Domain (FDTD), to optimize dispersion and Fano resonance properties, making the metamaterial a promising candidate for applications such as solar energy harvesting and biochemical sensing.
View Article and Find Full Text PDF

Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!