AI Article Synopsis

  • The study shows that using dual-polarization quadrature duobinary modulation enables digital backward propagation (DBP) for high-speed transmission (112Gbit/s) over long distances (1640km) with reduced complexity.
  • It compares single-channel and multi-channel setups, indicating that a multi-channel system with ten transmitters can operate effectively without in-line optical dispersion compensation.
  • The findings suggest that this approach not only maintains performance but also reduces computational demands by 60% compared to traditional modulation methods, enhancing the system's tolerance to transmission impairments.

Article Abstract

We numerically report on the complexity reduction of digital backward propagation (DBP) by utilizing correlative encoded transmission (dual-polarization quadrature duobinary) at a bit-rate of 112Gbit/s over 1640km fiber link. The single channel (N=1) and multi-channel (N=10) transmission performances are compared in this paper. In case of multi-channel system, 10 transmitters are multiplexed with 25GHz channel spacing. The fiber link consists of Large A(eff) Pure-Silica core fiber with 20 spans of 82km each. No in-line optical dispersion compensator is employed in the link. The system performances are evaluated by monitoring the bit-error-ratio and the forward error correction limit corresponds to bit-error-ratio of 3.8×10(-3). The DBP algorithm is implemented after the coherent detection and is based on the logarithmic step-size based split-step Fourier method. The results depict that dual-polarization quadrature duobinary can be used to transmit 112Gbit/s signals with an spectral efficiency of 4-b/s/Hz, but at the same time has a higher tolerance to nonlinear transmission impairments. By utilizing dual-polarization quadrature duobinary modulation, comparative system performance with respect to dual-polarization 16-quadrature amplitude modulation transmission can be achieved with 60% less computations and with a step-size of 205km.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.000781DOI Listing

Publication Analysis

Top Keywords

dual-polarization quadrature
12
quadrature duobinary
12
fiber link
8
transmission
5
evaluation correlative
4
correlative coding
4
coding dp-16qam
4
dp-16qam n-channel
4
n-channel 112gbit/s
4
112gbit/s coherent
4

Similar Publications

We experimentally demonstrate a cost-effective dual-polarization quadrature phase shift keying (DP-QPSK) coherent passive optical network (PON) system that operates at 100 Gbits/s/λ. This system utilizes distributed feedback lasers (DFBs) and a carrier recovery algorithm facilitated by a bifunctional frequency-domain pilot tone (FPT). To reduce costs in coherent PON implementations, low-cost DFBs are employed as the sole light sources, replacing the more expensive external cavity lasers (ECLs) at both the optical line terminal (OLT) and the optical network units (ONUs).

View Article and Find Full Text PDF

We propose a surface-normal dual-polarization in-phase and quadrature modulator (DP-IQM) that employs a thin dielectric metasurface (MS) layer inserted on a high-speed electro-absorptive modulator array. The metasurface provides the functionalities of all the passive components necessary for a DP-IQM, including a polarization beam splitter/combiner and an interferometric circuit, to a normal-incident beam. A dielectric metasurface composed of silicon nanoposts is designed and fabricated to experimentally demonstrate polarization and beam splitting functionalities with a phase error of less than 0.

View Article and Find Full Text PDF

Coherent reception, along with time- and wavelength-division multiplexing (TWDM), is a promising concept to simultaneously support multiple services in future high-speed point-to-multipoint passive optical networks (PONs). The next-generation PON 2 (NG-PON2) standard describes a TWDM-PON based on IM/DD intensity modulation and direct detection (IM/DD) which employs tunable-lasers and optical filters such as tunable optical filters or cyclic arrayed-waveguide gratings. Here, we investigate what we believe to be a novel coherent TWDM-PON architecture based on a frequency comb source in the optical line terminal (OLT), and thermally-tuned distributed-feedback (DFB) lasers in the optical network units (ONUs).

View Article and Find Full Text PDF

Carrier-assisted differential detection (CADD) is a promising solution for high-capacity and cost-sensitive short-reach application scenarios, in which the optical field of a complex-valued double-sideband (CV-DSB) signal is reconstructed without using a local oscillator laser. In this work, we propose a polarization division multiplexed asymmetric twin single-sideband CADD (PDM-ATSSB CADD) scheme to realize the optical field recovery of the PDM CV-DSB signals. The polarization fading is solved by using a pair of optical bandpass filters (OBPFs) to suppress the unwanted other polarized offset carrier and signal, and the dual-polarization optical field is recovered by the CADD receiver.

View Article and Find Full Text PDF

Time and frequency division multiplexing (TFDM) coherent passive optical networks (PONs) are considered as a promising candidate for future optical access networks due to the advantage of high sensitivity, high spectral efficiency, and flexibility. We propose a novel, to our knowledge, bidirectional TFDM 200-Gb/s coherent PON architecture based on the digital subcarrier multiplexing (DSCM) technology. A polarization-insensitive simplified coherent receiver is achieved at the ONU side by Alamouti coding and heterodyne detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!