Three-dimensional coupled-wave theory is extended to model triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization. A generalized coupled-wave equation is derived to describe the sixfold symmetry of the eigenmodes in a triangular lattice. The extended theory includes the effects of both surface radiation and in-plane losses in a finite-size laser structure. Modal properties of interest including the band structure, radiation constant, threshold gain, field intensity profile, and far-field pattern (FFP) are calculated. The calculated band structure and FFP, as well as the predicted lasing mode, agree well with experimental observations. The effect of air-hole size on mode selection is also studied and confirmed by experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.000565 | DOI Listing |
J Opt Soc Am A Opt Image Sci Vis
August 2024
A three-dimensional (3D) waveguide model is applied in extreme ultraviolet (EUV) lithography simulations. The 3D waveguide model is equivalent to rigorous coupled-wave analysis, but fewer field components are used to solve Maxwell's equations. The 3D waveguide model uses two components of vector potential, and , corresponding to the two polarizations.
View Article and Find Full Text PDFThis paper reminds the principle and characteristics of plasmonic lithography, and points out the importance of establishing a fast and high precision plasmonic lithography imaging model and developing computational lithography. According to the characteristics of plasmonic lithography, the rigorous coupled-wave analysis (RCWA) algorithm is a very suitable alternative algorithm. In this paper, a three-dimensional plasmonic lithography model based on RCWA algorithm is established for computational lithography requirements.
View Article and Find Full Text PDFIn this paper the influence of vibration on reflectivity is systematically analyzed. A three-dimensional topography model of a machined surface considering vibration is established first. Based on the three-dimensional morphology model, the reflectivity of a diamond turned surface is calculated by a rigorous coupled wave method.
View Article and Find Full Text PDFSpherical/aspherical mirrors are widely used in optical systems and imaging systems, but their reflectivity is affected by the surface roughness. In this study, the effects of plastic side flow and elastic recovery on the diffraction phenomenon and reflectivity are analyzed systematically. The energy ratio of an ultra-precision turning surface is calculated by rigorous coupled-wave method, the influence of aberration on diffraction efficiency is considered in combination with the specific structural parameters of spherical/aspherical surface, and the appropriate measuring beam diameter is selected.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
LTM, CNRS, CEA/LETI-Minatec, Grenoble INP, Institute of Engineering and Management, Université Grenoble Alpes, 38054 Grenoble, France.
Mueller matrix ellipsometry (MME) is a powerful metrology tool for nanomanufacturing. The application of MME necessitates electromagnetic computations for inverse problems of metrology determination in both the conventional optimization process and the recent neutral network approach. In this study, we present an efficient, rigorous coupled-wave analysis (RCWA) simulation of multilayer nanostructures to quantify reflected waves, enabling the fast simulation of the corresponding Mueller matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!