We propose and demonstrate an efficient energy-saving scheme incorporating dozing and sleep modes for WDM-PONs with centralized light sources (CLS). The novel scheme is based on simple power detection and local transmission request. Two logic control units are designed to switch the operation modes of the respective ONUs and their associated transceivers in the OLT. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. The simulation results reveal that the energy-saving of the ONUs in the online state mainly arises from the dozing mode, not from the sleep mode, while the energy-saving of the associated transceivers in the OLT is contributed mainly from the situation where ONUs are in the offline state.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.029931DOI Listing

Publication Analysis

Top Keywords

efficient energy-saving
8
energy-saving scheme
8
scheme incorporating
8
incorporating dozing
8
dozing sleep
8
sleep modes
8
associated transceivers
8
transceivers olt
8
scheme
4
modes cls-based
4

Similar Publications

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.

View Article and Find Full Text PDF

Electronic and vacancy engineering of ruthenium doped hollow-structured NiO/CoO nanoreactors for low-barrier electrochemical urea-assisted energy-saving hydrogen production.

J Colloid Interface Sci

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China. Electronic address:

Discovering a valid approach to achieve a novel and efficient water splitting catalyst is essential for the development of hydrogen energy technology. Herein, unique hollow-structured ruthenium (Ru)-doped nickel-cobalt oxide (Ru-NiO/CoO/NF) nanocube arrays are fabricated as high-efficiency bifunctional electrocatalysts for hydrogen evolution reaction (HER)/urea oxidation reaction (UOR) through combined electronic and vacancy engineering. The structural characterization and experimental results indicate that the doping of Ru can not only effectively modulate the electronic structure of Ru-NiO/CoO/NF, but also increase the content of oxygen vacancies in the structure of Ru-NiO/CoO/NF to stabilize the existence of oxygen vacancies during the catalytic process.

View Article and Find Full Text PDF

Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management.

Int J Biol Macromol

December 2024

Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!