We demonstrate vertical-incidence electroabsorption modulators for free-space optical interconnects. The devices operate via the quantum-confined Stark effect in Ge/SiGe quantum wells grown on silicon substrates by reduced pressure chemical vapor deposition. The strong electroabsorption contrast enables use of a moderate-Q asymmetric Fabry-Perot resonant cavity, formed using a film transfer process, which allows for operation over a wide optical bandwidth without thermal tuning. Extinction ratios of 3.4 dB and 2.5 dB are obtained for 3 V and 1.5 V drive swings, respectively, with insertion loss less than 4.5 dB. For 60 ?m diameter devices, large signal modulation is demonstrated at 2 Gbps, and a 3 dB modulation bandwidth of 3.5 GHz is observed. These devices show promise for high-speed, low-energy operation given further miniaturization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.029164 | DOI Listing |
Thermal annealing of thin metal films induces morphology changes that have a dramatic effect in the optical properties. Here we propose an asymmetric Fabry-Perot resonator consisting of a top metal film, a dielectric spacer, and a bottom metal mirror that can display a diverse infrared response. Thermally induced morphology changes result in large reflectivity variations within a limited temperature range following the top film transition between conductive, highly lossy, and transparent regimes.
View Article and Find Full Text PDFNat Commun
April 2024
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA.
Engineering asymmetric transmission between left-handed and right-handed circularly polarized light in planar Fabry-Pérot (FP) microcavities would enable a variety of chiral light-matter phenomena, with applications in spintronics, polaritonics, and chiral lasing. Such symmetry breaking, however, generally requires Faraday rotators or nanofabricated polarization-preserving mirrors. We present a simple solution requiring no nanofabrication to induce asymmetric transmission in FP microcavities, preserving low mode volumes by embedding organic thin films exhibiting apparent circular dichroism (ACD); an optical phenomenon based on 2D chirality.
View Article and Find Full Text PDFSensors (Basel)
February 2024
Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Achieving the simultaneity of ventilation and soundproofing is a significant challenge in applied acoustics. Ventilated soundproofing relies on the interplay between local resonance and nonlocal coupling of acoustic waves within a sub-wavelength structure. However, previously studied structures possess limited types of fundamental resonators and lack modifications from the basic arrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!