How Fanconi anemia (FA) protein D2 (FANCD2) performs DNA damage repair remains largely elusive. We report here that translesion synthesis DNA polymerase (pol) eta is a novel mediator of FANCD2 function. We found that wild type (wt) FANCD2, not K561R (mt) FANCD2, can interact with pol eta. Upon DNA damage, the interaction of pol eta with FANCD2 occurs earlier than that with PCNA, which is in concert with our finding that FANCD2 monoubiquitination peaks at an earlier time point than that of PCNA monoubiquitination. FANCD2-null FA patient cells (PD20) carrying histone H2B-fused pol eta and wtFANCD2, respectively, show a similar tendency of low Mitomycin C (MMC) sensitivity, while cells transfected with empty vector control or pol eta alone demonstrate a similar high level of MMC sensitivity. It therefore appears that FANCD2 monoubiquitination plays a similar anchor role as histone to bind DNA in regulating pol eta. Collectively, our study indicates that, in the early phase of DNA damage response, FANCD2 plays crucial roles in recruiting pol eta to the sites of DNA damage for repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610727PMC
http://dx.doi.org/10.4161/cc.23755DOI Listing

Publication Analysis

Top Keywords

pol eta
28
dna damage
20
fancd2
9
dna polymerase
8
eta
8
eta fancd2
8
damage repair
8
fancd2 monoubiquitination
8
mmc sensitivity
8
dna
7

Similar Publications

The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.

View Article and Find Full Text PDF

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Purpose: High-intensity functional interval training (HIFT) is predominantly composed of high exercise training intensities (HiT) and loads. Both have been linked to a higher risk of overtraining and injuries in inexperienced populations. A polarized training approach is characterized by high amounts of low-intensity training (LiT) and only approximately 5%-20% HiT.

View Article and Find Full Text PDF

Old Passengers as New Drivers: Chromosomal Passenger Proteins Engage in Translesion Synthesis.

Cells

October 2024

Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.

Article Synopsis
  • Survivin plays a crucial role in inhibiting apoptosis and aiding mitotic progression, as well as contributing to therapy resistance through its involvement in the DNA damage response.
  • Recent research shows that ionizing radiation increases Survivin levels, leading to its accumulation in specific nuclear areas associated with DNA replication, and depletion of Survivin enhances DNA damage markers, suggesting a role in DNA repair.
  • The study uncovers a relationship between Survivin and chromosomal passenger complex proteins in facilitating damage-induced replication stress management, highlighting the potential for these proteins to influence tumorigenesis due to their overexpression in cancers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!