Abnormalities of the hippocampus are intricately involved in the pathophysiology of schizophrenia. Hippocampal volume decrease is present at disease onset and has mainly been observed in the anterior and posterior part of the hippocampus. Nevertheless, an association between regionally specific hippocampal shape deformities putatively affecting a pathophysiologically crucial region, i.e. cornu ammonis field 1 (CA1), and symptomatology as well as required maintenance medication has not been observed. The aim of this study was to characterize the relationship between CA1-specific hippocampal surface deformations and symptom severity. Furthermore, we aimed to explore whether such specific morphological hippocampus abnormalities statistically predict the maintenance dosage of antipsychotic medication. Hippocampal shape and volume were determined by manual segmentation of high resolution, whole brain, three-dimensional structural magnetic resonance imaging scans. Associations between hippocampal volume, specific shape deformities in CA1, and positive and negative symptoms were assessed in 32 patients with schizophrenia and compared with 34 healthy control subjects. In addition to volume reductions of the left hippocampus, patients with schizophrenia displayed specific shape deformities in the left anterior and posterior CA1 subfield. Overall, the severity of positive symptoms was closely associated to these morphological deformities, specifically delusions and hallucinations. In addition, CA1 deformity was linked to the required antipsychotic dosage. Findings were replicated in a second, independent sample. Hippocampal CA1 deformity, possibly reflecting shrinkage, might result from a specific hyperactivity, leading to a circumscribed volume loss. Owing to its physiological function, deficits in CA1 may be directly involved in the pathogenesis of hallucinations and delusions, core symptoms in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/aws335DOI Listing

Publication Analysis

Top Keywords

ca1 deformity
12
shape deformities
12
hippocampal ca1
8
symptom severity
8
antipsychotic dosage
8
hippocampal volume
8
anterior posterior
8
hippocampal shape
8
specific shape
8
patients schizophrenia
8

Similar Publications

Huntingtin plays an essential role in the adult hippocampus.

Neurobiol Dis

January 2025

Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:

The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD.

View Article and Find Full Text PDF

Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.

View Article and Find Full Text PDF

The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function.

Acta Neuropathol Commun

December 2024

The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Article Synopsis
  • Cullin 4B (CUL4B) is a protein linked to X-linked intellectual disability (XLID), with its mutations leading to brain dysfunction and impaired cognition.
  • Researchers used advanced single-nucleus RNA sequencing to study how CUL4B deficiency affects communication and gene expression among different brain cell types, finding significant changes that relate to synapse problems.
  • The study demonstrated that CUL4B-deficient mice exhibited synapse loss, abnormal synaptic structures, and decreased memory capabilities, highlighting the potential for targeted therapies to address synaptic issues and cognitive decline related to CUL4B mutations.
View Article and Find Full Text PDF
Article Synopsis
  • Ipriflavone (IPRI) is used to prevent postmenopausal bone loss and offers antioxidant and cognitive benefits, but it has low bioavailability due to poor solubility.
  • In this study, IPRI was formulated into targeted poly-lactic-co-glycolic acid (PLGA) nanoparticles with Tet-1 peptide to enhance its therapeutic effects in a rat model of Alzheimer's disease (AD), exacerbated by streptozotocin (STZ) injections.
  • Results showed that IPRI nanoparticles were more effective than free IPRI in reducing cognitive dysfunction, oxidative stress, and neurodegenerative changes, leading to improved neuronal cell viability and reduced Alzheimer's
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!