Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method.

Nanoscale Res Lett

Laboratory of Polymer, Faculty of Chemistry, University of Science-National University of HoChiMinh City (VNU-HCM), 227 Nguyen Van Cu, Ward 4, District 5, HoChiMinh City, 70250, Vietnam.

Published: February 2013

Silica powder at nanoscale was obtained by heat treatment of Vietnamese rice husk following the sol-gel method. The rice husk ash (RHA) is synthesized using rice husk which was thermally treated at optimal condition at 600°C for 4 h. The silica from RHA was extracted using sodium hydroxide solution to produce a sodium silicate solution and then precipitated by adding H2SO4 at pH = 4 in the mixture of water/butanol with cationic presence. In order to identify the optimal condition for producing the homogenous silica nanoparticles, the effects of surfactant surface coverage, aging temperature, and aging time were investigated. By analysis of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the silica product obtained was amorphous and the uniformity of the nanosized sample was observed at an average size of 3 nm, and the BET result showed that the highest specific surface of the sample was about 340 m2/g. The results obtained in the mentioned method prove that the rice husk from agricultural wastes can be used for the production of silica nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606399PMC
http://dx.doi.org/10.1186/1556-276X-8-58DOI Listing

Publication Analysis

Top Keywords

rice husk
20
silica nanoparticles
12
vietnamese rice
8
husk sol-gel
8
sol-gel method
8
optimal condition
8
electron microscopy
8
rice
5
husk
5
silica
5

Similar Publications

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Rice husk ash is an industrial waste produced by biomass power plant to generate electricity, which contains a lot of silica. The accumulation of rice husk ash not only consumes land resources, but also causes environmental pollution. It is an urgent problem to explore the resource utilization of rice husk ash.

View Article and Find Full Text PDF

Formation of alginate gel stabilized silica nanoparticles for encapsulation and topical delivery of minoxidil.

Colloids Surf B Biointerfaces

December 2024

Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China. Electronic address:

Silica nanoparticles-embedded smart-gels are efficient drug carrier systems due to their structural flexibility, high porosity, and ease of formulation development. Herein, the extent of interaction of minoxidil (MXD), a potent vasodilator prodrug, with silica nanoparticles (SiNPs) and alginate (ALG) was investigated. The SiNPs were prepared by extracting silica from rice husk ash, and these SiNPs were further used to prepare MXD-loaded-SiNPs (MXD-SiNPs) by loading them with an appropriate amount of MXD.

View Article and Find Full Text PDF

Superabsorbent polymers (PSAs) have been extensively studied to act as internal curing agents in cementitious materials, as they have the characteristic of absorbing and releasing water in a controlled manner, which can contribute to the hydration process of a cementitious medium during its consolidation. Thus, hydrogels consisting of polyacrylamide (PAAm), pectin (Pec) and rice husk ash (RHA) were synthesized to be applied in cementitious matrices. In addition, the PSAs were characterized by FTIR, SEM, and XRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!